A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Artificial intelligence-enhanced electrocardiogram for arrhythmogenic right ventricular cardiomyopathy detection. | LitMetric

Aims: ECG abnormalities are often the first signs of arrhythmogenic right ventricular cardiomyopathy (ARVC) and we hypothesized that an artificial intelligence (AI)-enhanced ECG could help identify patients with ARVC and serve as a valuable disease-detection tool.

Methods And Results: We created a convolutional neural network to detect ARVC using a 12-lead ECG. All patients with ARVC who met the 2010 task force criteria and had disease-causative genetic variants were included. All case ECGs were randomly assigned in an 8:1:1 ratio into training, validation, and testing groups. The case ECGs were age- and sex-matched with control ECGs at our institution in a 1:100 ratio. Seventy-seven patients (51% male; mean age 47.2 ± 19.9), including 56 patients with PKP2, 7 with DSG2, 6 with DSC2, 6 with DSP, and 2 with JUP were included. The model was trained using 61 case ECGs and 5009 control ECGs; validated with 7 case ECGs and 678 control ECGs and tested in 22 case ECGs and 1256 control ECGs. The sensitivity, specificity, positive and negative predictive values of the model were 77.3, 62.9, 3.32, and 99.4%, respectively. The area under the curve for rhythm ECG and median beat ECG was 0.75 and 0.76, respectively.

Conclusion: Our study found that the model performed well in excluding ARVC and supports the concept that the AI ECG can serve as a biomarker for ARVC if a larger cohort were available for network training. A multicentre study including patients with ARVC from other centres would be the next step in refining, testing, and validating this algorithm.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10944679PMC
http://dx.doi.org/10.1093/ehjdh/ztad078DOI Listing

Publication Analysis

Top Keywords

case ecgs
20
control ecgs
16
patients arvc
12
ecgs
9
arrhythmogenic ventricular
8
ventricular cardiomyopathy
8
including patients
8
arvc
7
ecg
6
patients
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!