Previous studies of Loggerhead Shrikes (Laniidae: ) in North America have indicated considerable intraspecific genetic and phenotypic differentiation, but the congruence between genetic and phenotypic differentiation remains obscure. We examined phenotypic differences in beak shape and bite force among geographic groupings across a 950 km range, from the lower Imperial Valley to the upper Central Valley of California, USA. We integrated these analyses with a population genetic analysis of six microsatellite markers to test for correspondence between phenotypic and genetic differences among geographic groups. We found significant phenotypic differentiation despite a lack of significant genetic differentiation among groups. Pairwise beak shape and bite force distances nevertheless were correlated with genetic ( ) distances among geographic groups. Furthermore, the phenotypic and genetic distance matrices were correlated with pairwise geographic distances. Takentogether, these results suggest that phenotypic differences might be influenced by neutral processes, inbreeding (as indicated by high heterozygosity deficiencies we observed), local adaptation, and/or phenotypic plasticity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10949006 | PMC |
http://dx.doi.org/10.1002/ece3.11079 | DOI Listing |
Mol Microbiol
January 2025
Laboratório de Biologia Molecular de Patógenos (LBMP), Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo (Unifesp), São Paulo, Brazil.
Leishmania presents a complex life cycle that involves both invertebrate and vertebrate hosts. By regulating gene expression, protein synthesis, and metabolism, the parasite can adapt to various environmental conditions. This regulation occurs mainly at the post-transcriptional level and may involve epitranscriptomic modifications of RNAs.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei 230022, China. Electronic address:
Synovial hyperplasia, inflammation and immune cell infiltration are the central pathological basis of rheumatoid arthritis (RA). Nonetheless, the cellular, molecular and immunological mechanisms of RA remain poorly understood. An integrated analysis of single-cell RNA (scRNA) and bulk RNA sequencing datasets aimed to unravel the cellular landscape, differentiation trajectory, transcriptome signature, and immunoinfiltration feature of RA synovium.
View Article and Find Full Text PDFJ Allergy Clin Immunol
January 2025
Departments of Pediatrics and Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI.
Background: Rhinoconjunctivitis phenotypes are conventionally described based on symptom severity, duration and seasonality and aeroallergen sensitization. It is not known whether these phenotypes fully reflect the patterns of symptoms seen at a population level.
Objective: To identify phenotypes of rhinoconjunctivitis based on symptom intensity and seasonality using an unbiased approach and to compare their characteristics.
Behav Brain Res
January 2025
Center for Child Health, Behavior and Development, Seattle Children's Research Institute, Seattle, WA, United States of America.
Background: Thalamocortical functional and structural connectivity alterations may contribute to clinical phenotype of Autism Spectrum Disorder. As previous studies focused mainly on thalamofrontal connections, we comprehensively investigated between-group differences of thalamic functional networks and white matter pathways projecting also to temporal, parietal, occipital lobes and their associations with core and co-occurring conditions of this population.
Methods: A total of 38 children (19 with Autism Spectrum Disorder) underwent magnetic resonance imaging and behavioral assessment.
Microb Cell Fact
January 2025
Human Microbiology Institute, New York, NY, 10014, USA.
Our previous studies revealed the existence of a Universal Receptive System that regulates interactions between cells and their environment. This system is composed of DNA- and RNA-based Teazeled receptors (TezRs) found on the surface of prokaryotic and eukaryotic cells, as well as integrases and recombinases. In the current study, we aimed to provide further insight into the regulatory role of TezR and its loss in Staphylococcus aureus gene transcription.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!