Imaging features and deep learning for prediction of pulmonary epithelioid hemangioendothelioma in CT images.

J Thorac Dis

Department of Allergy and Clinical Immunology, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.

Published: February 2024

AI Article Synopsis

  • Pulmonary epithelioid hemangioendothelioma (PEH) is a rare vascular tumor, difficult to diagnose early, prompting a study to analyze and predict its imaging characteristics.
  • The research involved assessing 96 cases (25 from a center and 71 published) and created a deep learning model using CT images for accurate PEH identification.
  • Findings revealed diverse imaging features, with specific patterns and a deep learning model showing a promising accuracy, indicating potential clinical application for future use.

Article Abstract

Background: Pulmonary epithelioid hemangioendothelioma (PEH) is a rare vascular tumour, and its early diagnosis remains challenging. This study aims to comprehensively analyse the imaging features of PEH and develop a model for predicting PEH.

Methods: Retrospective and pooled analyses of imaging findings were performed in PEH patients at our center (n=25) and in published cases (n=71), respectively. Relevant computed tomography (CT) images were extracted and used to build a deep learning model for PEH identification and differentiation from other diseases.

Results: In this study, bilateral multiple nodules/masses (n=19) appeared to be more common with most nodules less than 2 cm. In addition to the common types and features, the pattern of mixed type (n=4) and isolated nodules (n=4), punctate calcifications (5/25) and lymph node enlargement were also observed (10/25). The presence of pleural effusion is associated with a poor prognosis in PEH. The deep learning model, with an area under the receiver operating characteristic curve (AUC) of 0.71 [95% confidence interval (CI): 0.69-0.72], has a differentiation accuracy of 100% and 74% for the training and test sets respectively.

Conclusions: This study confirmed the heterogeneity of the imaging findings in PEH and showed several previously undescribed types and features. The current deep learning model based on CT has potential for clinical application and needs to be further explored in the future.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10944745PMC
http://dx.doi.org/10.21037/jtd-23-455DOI Listing

Publication Analysis

Top Keywords

deep learning
16
learning model
12
imaging features
8
pulmonary epithelioid
8
epithelioid hemangioendothelioma
8
imaging findings
8
types features
8
peh
6
imaging
4
deep
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!