Umpolung N-heterocyclic carbene (NHC) catalysis of non-aldehyde substrates offers new pathways for C-C bond formation, but has proven challenging to develop in terms of viable substrate classes. Here, we demonstrate that pyridinium ions can undergo NHC addition and subsequent intramolecular C-C bond formation through a deoxy-Breslow intermediate. The alkylation demonstrates, for the first time, that deoxy-Breslow intermediates are viable for catalytic umpolung of areniums.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10947523PMC
http://dx.doi.org/10.1002/ange.202117524DOI Listing

Publication Analysis

Top Keywords

nhc catalysis
8
deoxy-breslow intermediates
8
c-c bond
8
bond formation
8
catalysis umpolung
4
umpolung pyridinium
4
pyridinium alkylation
4
alkylation deoxy-breslow
4
intermediates umpolung
4
umpolung n-heterocyclic
4

Similar Publications

Acylation stands as a fundamental process in both biological pathways and synthetic chemical reactions, with acylated saccharides and their derivatives holding diverse applications ranging from bioactive agents to synthetic building blocks. A longstanding objective in organic synthesis has been the site-selective acylation of saccharides without extensive pre-protection of alcohol units. In this study, we demonstrate that by simply altering the chirality of N-heterocyclic carbene (NHC) organic catalysts, the site-selectivity of saccharide acylation reactions can be effectively modulated.

View Article and Find Full Text PDF

Bimetallic catalysts have gained attention as promising contenders, owing to the synergistic interaction between two distinct metal centers. In this study, we present two N-heterocyclic carbene iridium(III) pentamethylcyclopentadienyl complexes [Cp*Ir(fcpyNHC)Cl]PF6 (1) and [Cp*Ir(pyNHC)Cl]PF6 (2) where 1 includes a ferrocene moiety acting as a bimetallic complex. Using ceric ammonium nitrate as a sacrificial oxidant, both complexes were tested for water oxidation.

View Article and Find Full Text PDF

Developing asymmetric transformations using electroredox and N-heterocyclic carbene (NHC)-catalyzed radical pathways is still desirable and challenging. Herein, we report an iodide-promoted β-carbon activation (LUMO-lowering process) of enals via electroredox carbene catalysis coupled with a hydrogen evolution reaction (HER). This strategy offers an environmentally friendly and sustainable route for rapidly assembling synthetically useful chiral naphthopyran-3-one in good to excellent yield and enantioselectivity using traceless electrons as inexpensive and greener oxidants.

View Article and Find Full Text PDF

Efficient catalytic systems for various organic transformations in green solvents, especially water, are in great demand. Catalytically active bis-NHC complexes of palladium(II) based on imidazole-4,5-dicarboxylic acid with different lipophilicities were obtained. The synthesis of imidazolium salts was complicated by the formation of side products of nucleophilic substitution by iodide ions in the Menshutkin reaction involving alkyl iodides, which was successfully resolved by using alkyl tosylates.

View Article and Find Full Text PDF

N-Heterocyclic carbenes (NHCs) have been used as organocatalysts for a multitude of C-C and C-heteroatom bond-forming reactions. They enable diverse modalities of activating a wide range of structurally distinct substrate classes and allow access to electronically distinct intermediates. The easy tunability of the NHC scaffold contributes to its versatility.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!