Two-dimensional, Knight-shifted, -contrasted Na magnetic resonance imaging (MRI) of an all-solid-state cell with a Na electrode and a ceramic electrolyte is employed to directly observe Na microstructural growth. A spalling dendritic morphology is observed and confirmed by more conventional post-mortem analysis; X-ray tomography and scanning electron microscopy. A significantly larger Na for the dendritic growth, compared with the bulk metal electrode, is attributed to increased sodium ion mobility in the dendrite. Na -contrast MRI of metallic sodium offers a clear, routine method for observing and isolating microstructural growths and can supplement the current suite of techniques utilised to analyse dendritic growth in all-solid-state cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10946918PMC
http://dx.doi.org/10.1002/ange.202013066DOI Listing

Publication Analysis

Top Keywords

growth all-solid-state
8
magnetic resonance
8
resonance imaging
8
dendritic growth
8
imaging sodium
4
sodium dendrite
4
growth
4
dendrite growth
4
all-solid-state sodium
4
sodium batteries
4

Similar Publications

The choice of ionic-liquid-like monomers (ILM) for single-ion conducting polyelectrolytes (SICPs) is crucial for the performance of all-solid-state lithium batteries. In the current study, we propose a novel approach for development of SICPs via design and synthesis of a new ILM with long poly(ethylene oxide) spacer between methacrylic group and (trifluoromethane)sulfonylimide anion. Its homopolymer shows an ionic conductivity that is ∼5 orders of magnitude higher (9.

View Article and Find Full Text PDF

The advancement of all-solid-state lithium metal batteries requires breakthroughs in solid-state electrolytes (SSEs) for the suppression of lithium dendrite growth at high current densities and high capacities (>3 mAh cm) and innovation of SSEs in terms of crystal structure, ionic conductivity and rigidness. Here we report a superionic conducting, highly lithium-compatible and air-stable vacancy-rich β-LiN SSE. This vacancy-rich β-LiN SSE shows a high ionic conductivity of 2.

View Article and Find Full Text PDF

Gradient-porous-structured Ni-rich layered oxide cathodes with high specific energy and cycle stability for lithium-ion batteries.

Nat Commun

November 2024

Department of Chemical Engineering, Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China.

Article Synopsis
  • * A new synthesis method using molten salt introduces gradient pores in the NCM particles, helping to absorb volume changes and reduce fractures, thus improving the cathode's performance.
  • * This approach leads to a high nickel, low cobalt cathode that shows both excellent energy capacity (941.2 Wh/kg) and impressive stability, maintaining 80.5% capacity after 800 cycles and over 95% after storage at high temperatures.
View Article and Find Full Text PDF

Cross-Linked Polyamide-Integrated Argyrodite LiPSCl for All-Solid-State Lithium Metal Batterie.

Small

November 2024

Solid State Batteries Research Center, GRINM (Guangdong) Institute for Advanced Materials and Technology, College of New Energy and Electrical Engineering, Foshan, Guangdong, 528051, P. R. China.

Lithium dendrite growth has become a significant barrier to realizing high-performance all-solid-state lithium metal batteries. Herein, an effective approach is presented to address this challenge through interphase engineering by using a cross-linked polyamide (negative electrostatic potential) that is chemically anchored to the surface of LiPSCl (positive electrostatic potential). This method improves contact between electrolyte particles and strategically modifies the local electronic structure at the grain boundary.

View Article and Find Full Text PDF

Garnet-type LiLaZrTaO (LLZTO) is regarded as a highly competitive next-generation solid-state electrolyte for all-solid-state lithium batteries owing to reliable safety, a wide electrochemical operation window of 0-6 V versus Li/Li, and a superior stability against Li metal. Nevertheless, insufficient interface contacts caused by pores, along with Li dendrite growth at these voids and grain boundary regions, have hindered their commercial application. Herein, we suggest a method to produce high-quality LLZTO using LiAlO (LAO) as a chemical additive that leads to an improved microstructure with larger grain size (∼25 μm), a high relative density (∼96%), lower porosity (∼3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!