Discontinuous phase diagram of amorphous carbons.

Natl Sci Rev

CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, China.

Published: April 2024

The short-range order and medium-range order of amorphous carbons demonstrated in experiments allow us to rethink whether there exist intrinsic properties hidden by atomic disordering. Here we presented six representative phases of amorphous carbons (0.1-3.4 g/cm), namely, disordered graphene network (DGN), high-density amorphous carbon (HDAC), amorphous diaphite (a-DG), amorphous diamond (a-D), paracrystalline diamond (p-D), and nano-polycrystalline diamond (NPD), respectively, classified by their topological features and microstructural characterizations that are comparable with experiments. To achieve a comprehensive physical landscape for amorphous carbons, a phase diagram was plotted in the sp/sp versus density plane, in which the counterintuitive discontinuity originates from the inherent difference in topological microstructures, further guiding us to discover a variety of phase transitions among different amorphous carbons. Intriguingly, the power law, log(sp/sp) ∝ , hints at intrinsic topology and hidden order in amorphous carbons, providing an insightful perspective to reacquaint atomic disorder in non-crystalline carbons.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10950053PMC
http://dx.doi.org/10.1093/nsr/nwae051DOI Listing

Publication Analysis

Top Keywords

amorphous carbons
24
amorphous
9
phase diagram
8
order amorphous
8
carbons
7
discontinuous phase
4
diagram amorphous
4
carbons short-range
4
short-range order
4
order medium-range
4

Similar Publications

We review the current state of understanding of Ceres as it relates to planetary protection policy for future landed missions, including for sample return, to the dwarf planet. The Dawn mission found Ceres to be an intriguing target for a mission, with evidence for the presence of regional, possibly extensive liquid at depth, and local expressions of recent and potentially ongoing activity. The Dawn mission also found a high abundance of carbon in the regolith, interpreted as a mix of carbonates and amorphous carbon, as well as locally high concentrations of organic matter.

View Article and Find Full Text PDF

Five commercially available cut-resistant gloves were sourced from four different worldwide manufacturers which were advertised to contain graphene. A method was developed to assess the fibers composing each glove, including dissolution of the constituent fibers using sulfuric acid or liquid paraffin at elevated temperature, to extract and analyze particle additives. Scanning electron microscopy with energy-dispersive X-ray spectroscopy was applied to fibers and extracted particles for morphological and elemental analysis; Raman spectroscopy was applied to discern the composition of carbonaceous materials for the ultimate purpose of identifying any graphenic additives.

View Article and Find Full Text PDF

Hydrothermal carbonization (HTC) of carbohydrates has been reported as a sustainable and green technique to produce carbonaceous micro- and nano-materials. These materials have been developed for several applications, including catalysis, separation science, metal ion adsorption and nanomedicine. Carbon nanoparticles (CNPs) obtained through HTC are particularly interesting for the latter application since they exhibit photothermal properties when irradiated with near-infrared (NIR) light, act as an antioxidant by scavenging reactive oxygen species (ROS), and present good colloidal stability and biocompatibility.

View Article and Find Full Text PDF

In this study, a binary composite adsorbent based on activated carbon and phosphoric acid geopolymer foam (ACP) was prepared by combining phosphoric acid geopolymer (PAGP) with activated carbon (AC) and applied for the removal of methylene blue (MB). Activated carbon was thoroughly mixed with a mixture of fly ash and metakaolin in varying ratios, followed by phosphoric acid activation and thermal curing. The ACP adsorbent was characterized using scanning electron microscope (SEM), Fourier transform infrared (FTIR) spectrophotometer, X-ray diffractometer (XRD), surface area analyser (SAP), and thermogravimetric analyser (TGA).

View Article and Find Full Text PDF

The conductivity of AgNWs electrodes can be enhanced by incorporating Ag grids, thereby facilitating the development of large-area flexible organic solar cells (FOSCs). Ag grids from vacuum evaporation offer the advantages of simple film formation, adjustable thickness, and unique structure. However, the complex 3D multi-component structure of AgNWs electrodes will exacerbate the aggregation of large Ag particles, causing the device short circuits.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!