Facile Synthesis of Dithienobenzothiadiazoles and D18-Cl Polymer via NaS-Mediated Rapid Thiophene-Annulations for Organic Solar Cells.

ChemSusChem

Department of Chemical Education, Institute of Fusion Science, Jeonbuk National University, 567 Baekje-daero, Jeonju, 54896, Republic of Korea.

Published: September 2024

We present a novel synthetic route for the rapid construction of dithieno[3',2':3,4;2'',3'':5,6]benzo[1,2-c][1,2,5]thiadiazoles via NaS-promoted thiophene annulation. This method facilitated the synthesis of D18-Cl polymer, known for its efficacy as a polymer donor in bulk-heterojunction polymer solar cells. Starting from commercially available 4,7-dihalo-5,6-difluorobenzo[c][1,2,5]thiadiazole, various 4,7-dialkynylated compounds were obtained through Sonogashira reaction conditions. Subsequent NaS-promoted thiophene annulations yielded DTBT and its derivatives in excellent yields within 10 minutes. DTBT was then utilized as a precursor for the concise synthesis of D18-Cl, benefiting from reduced synthetic steps, mild reaction conditions, decreased complexity, and high overall yields. In another route, a space group-bridged DTBT was directly constructed via NaS-promoted thiophene annulations and converted into D18-Cl through a couple of steps. This developed protocol offers a straightforward and reliable synthetic tool, conducive to reducing complexities in the production of DTBT-based organic electronic materials, thereby advancing the potential commercialization of organic solar cells.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cssc.202400055DOI Listing

Publication Analysis

Top Keywords

solar cells
12
nas-promoted thiophene
12
d18-cl polymer
8
organic solar
8
synthesis d18-cl
8
reaction conditions
8
thiophene annulations
8
facile synthesis
4
synthesis dithienobenzothiadiazoles
4
d18-cl
4

Similar Publications

In this study, we investigate the electrodeposition of various metals on silicon. Mn, Co, Ni, Ru, Pd, Rh, and Pt were identified as promising candidates for controlled electrodeposition onto silicon. Electrochemical evaluations employing cyclic voltammetry, Scanning Electron Microscopy (SEM) associated with energy-dispersive X-Ray Spectroscopy (SEM-EDS), and X-Ray Photoelectron Spectroscopy (XPS) techniques confirmed the deposition of Pd, Rh, and Pt as nanoparticles.

View Article and Find Full Text PDF

The hot carrier multi-junction solar cell (HCMJC) is an advanced-concept solar cell with a theoretical efficiency greater than 65%. It combines the advantages of hot carrier solar cells and multi-junction solar cells with higher power conversion efficiency (PCE). The thermalization coefficient () has been shown to slow down by an order of magnitude in low-dimensional structures, which will significantly improve PCE.

View Article and Find Full Text PDF

Energy generation and storage are critical challenges for developing economies due to rising populations and limited access to clean energy resources. Fossil fuels, commonly used for energy production, are costly and contribute to environmental pollution through greenhouse gas emissions. Quantum dot-sensitized solar cells (QDSSCs) offer a promising alternative due to their stability, low cost, and high-power conversion efficiency (PCE) compared to other third-generation solar cells.

View Article and Find Full Text PDF

A Review of Transparent Conducting Films (TCFs): Prospective ITO and AZO Deposition Methods and Applications.

Nanomaterials (Basel)

December 2024

Division of Physics, Engineering, Mathematics and Computer Sciences and Optical Science Center for Applied Research, Delaware State University, Dover, DE 19901, USA.

This study offers a comprehensive summary of the current states as well as potential future directions of transparent conducting oxides (TCOs), particularly tin-doped indium oxide (ITO), the most readily accessible TCO on the market. Solar cells, flat panel displays (FPDs), liquid crystal displays (LCDs), antireflection (AR) coatings for airbus windows, photovoltaic and optoelectronic devices, transparent p-n junction diodes, etc. are a few of the best uses for this material.

View Article and Find Full Text PDF

Three new bithiophene imide (BTI)-based organic small molecules, (), (), and (), with varied alkyl side chains, were developed and employed as self-assembled monolayers (SAMs) applied to NiOx films in tin perovskite solar cells (TPSCs). The NiOx layer has the effect of modifying the hydrophilicity and the surface roughness of ITO for SAM to uniformly deposit on it. The side chains of the SAM molecules play a vital role in the formation of a high-quality perovskite layer in TPSCs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!