The real-time requirement for image segmentation in laparoscopic surgical assistance systems is extremely high. Although traditional deep learning models can ensure high segmentation accuracy, they suffer from a large computational burden. In the practical setting of most hospitals, where powerful computing resources are lacking, these models cannot meet the real-time computational demands. We propose a novel network SwinD-Net based on Skip connections, incorporating Depthwise separable convolutions and Swin Transformer Blocks. To reduce computational overhead, we eliminate the skip connection in the first layer and reduce the number of channels in shallow feature maps. Additionally, we introduce Swin Transformer Blocks, which have a larger computational and parameter footprint, to extract global information and capture high-level semantic features. Through these modifications, our network achieves desirable performance while maintaining a lightweight design. We conduct experiments on the CholecSeg8k dataset to validate the effectiveness of our approach. Compared to other models, our approach achieves high accuracy while significantly reducing computational and parameter overhead. Specifically, our model requires only 98.82 M floating-point operations (FLOPs) and 0.52 M parameters, with an inference time of 47.49 ms per image on a CPU. Compared to the recently proposed lightweight segmentation network UNeXt, our model not only outperforms it in terms of the Dice metric but also has only 1/3 of the parameters and 1/22 of the FLOPs. In addition, our model achieves a 2.4 times faster inference speed than UNeXt, demonstrating comprehensive improvements in both accuracy and speed. Our model effectively reduces parameter count and computational complexity, improving the inference speed while maintaining comparable accuracy. The source code will be available at https://github.com/ouyangshuiming/SwinDNet.

Download full-text PDF

Source
http://dx.doi.org/10.1080/24699322.2024.2329675DOI Listing

Publication Analysis

Top Keywords

lightweight segmentation
8
segmentation network
8
swin transformer
8
transformer blocks
8
computational parameter
8
inference speed
8
computational
6
segmentation
5
swind-net lightweight
4
network
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!