Biosynthesis is the application of enzymes in microbial cell factories and has emerged as a promising alternative to chemical synthesis. However, natural enzymes with limited catalytic performance often need to be engineered to meet specific needs through a time-consuming trial-and-error process. This study presents a quantum mechanics (QM)-incorporated design-build-test-learn (DBTL) framework to rationally design phosphatase BT4131, an enzyme with an ambiguous substrate spectrum involved in N-acetylglucosamine (GlcNAc) biosynthesis. First, mutant M1 (L129Q) is designed using force field-based methods, resulting in a 1.4-fold increase in substrate preference (k/K) toward GlcNAc-6-phosphate (GlcNAc6P). QM calculations indicate that the shift in substrate preference is caused by a 13.59 kcal mol reduction in activation energy. Furthermore, an iterative computer-aided design is conducted to stabilize the transition state. As a result, mutant M4 (I49Q/L129Q/G172L) with a 9.5-fold increase in k/K and a 59% decrease in k/K is highly desirable compared to the wild type in the GlcNAc-producing chassis. The GlcNAc titer increases to 217.3 g L with a yield of 0.597 g (g glucose) in a 50-L bioreactor, representing the highest reported level. Collectively, this DBTL framework provides an easy yet fascinating approach to the rational design of enzymes for industrially viable biocatalysts.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11165480 | PMC |
http://dx.doi.org/10.1002/advs.202309852 | DOI Listing |
J Cell Sci
January 2025
National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology and State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Rd, Qingdao, 266237, People's Republic of China.
Glycosaminoglycans (GAGs), as animal polysaccharides, are linked to proteins to form various types of proteoglycans. Bacterial GAG lyases are not only essential enzymes that spoilage bacteria use for the degradation of GAGs, but also valuable tools for investigating the biological function and potential therapeutic applications of GAGs. The ongoing discovery and characterization of novel GAG lyases has identified an increasing number of lyases suitable for functional studies and other applications involving GAGs, which include oligosaccharide sequencing, detection and removal of specific glycan chains, clinical drug development and the design of novel biomaterials and sensors, some of which have not yet been comprehensively summarized.
View Article and Find Full Text PDFEcology
January 2025
Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada.
Optimal nest site selection is crucial in animals whose offspring are completely dependent on the shelter of a nest. Parental decisions influencing nest thermal conditions are particularly important because temperature strongly influences juvenile activity, metabolism, growth, developmental rate, survival, and adult body size. In small ectotherms such as bees, maternal decisions to nest in sun-exposed or shady sites can lead to marked differences in thermal microenvironments inside nests.
View Article and Find Full Text PDFPlant Physiol
January 2025
State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P R China.
Osmotic stress caused by drought, salinity, or cold conditions is an important abiotic factor that decreases membrane integrity and causes cell death, thus decreasing plant growth and productivity. Remodeling cell membrane composition via lipid turnover can counter the loss of membrane integrity and cell death caused by osmotic stress. Sphingolipids are important components of eukaryotic membrane systems; however, how sphingolipids participate in plant responses to osmotic stress remains unclear.
View Article and Find Full Text PDFPLoS One
January 2025
Faculty of Science, School of Earth and Atmospheric Sciences, Queensland University of Technology, Brisbane, QLD, Australia.
Not all corals are attached to the substrate; some taxa are solitary and free-living, allowing them to migrate into preferred habitats. However, the lifestyle of these mobile corals, including how they move and navigate for migration, remains largely obscure. This study investigates the specific biomechanics of Cycloseris cyclolites, a free-living coral species, during phototactic behaviour in response to blue and white light stimuli.
View Article and Find Full Text PDFBiochem J
January 2025
School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia.
The sulfosugar sulfoquinovose (SQ) is catabolized through the sulfoglycolytic Entner-Doudoroff pathway, beginning with the oxidation of SQ to sulfogluconolactone by SQ dehydrogenase. We present a comprehensive structural and kinetic characterization of Pseudomonas putida SQ dehydrogenase (PpSQDH). PpSQDH is a tetrameric enzyme belonging to the short-chain dehydrogenase/reductase (SDR) superfamily with a strong preference for NAD+ over NADP+.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!