Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Alternative splicing (AS) is a principal mode of genetic regulation and one of the most widely used mechanisms to generate structurally and functionally distinct mRNA and protein variants. Dysregulation of AS may result in aberrant transcription and protein products, leading to the emergence of human diseases. Although considered important for regulating gene expression, genome-wide AS dysregulation, underlying mechanisms, and clinical relevance in knee osteoarthritis (OA) remain unelucidated. Therefore, in this study, we elucidated and validated AS events and their regulatory mechanisms during OA progression.
Results: In this study, we identified differentially expressed genes between human OA and healthy meniscus samples. Among them, the OA-associated genes were primarily enriched in biological pathways such as extracellular matrix organization and ossification. The predominant OA-associated regulated AS (RAS) events were found to be involved in apoptosis during OA development. The expression of the apoptosis-related gene BCL2L13, XAF1, and NF2 were significantly different between OA and healthy meniscus samples. The construction of a covariation network of RNA-binding proteins (RBPs) and RAS genes revealed that differentially expressed RBP genes LAMA2 and CUL4B may regulate the apoptotic genes XAF1 and BCL2L13 to undergo AS events during OA progression. Finally, RT-qPCR revealed that CUL4B expression was significantly higher in OA meniscus samples than in normal controls and that the AS ratio of XAF1 was significantly different between control and OA samples; these findings were consistent with their expected expression and regulatory relationships.
Conclusions: Differentially expressed RBPs may regulate the AS of apoptotic genes during knee OA progression. XAF1 and its regulator, CUL4B, may serve as novel biomarkers and potential therapeutic targets for this disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10949708 | PMC |
http://dx.doi.org/10.1186/s12864-024-10181-w | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!