Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A risk analysis is conducted considering an array of release sources located around the NEOM shoreline. The sources are selected close to the coast and in neighboring regions of high marine traffic. The evolution of oil spills released by these sources is simulated using the MOHID model, driven by validated, high-resolution met-ocean fields of the Red Sea. For each source, simulations are conducted over a 4-week period, starting from first, tenth and twentieth days of each month, covering five consecutive years. A total of 180 simulations are thus conducted for each source location, adequately reflecting the variability of met-ocean conditions in the region. The risk associated with each source is described in terms of amount of oil beached, and by the time required for the spilled oil to reach the NEOM coast, extending from the Gulf of Aqaba in the North to Duba in the South. To further characterize the impact of individual sources, a finer analysis is performed by segmenting the NEOM shoreline, based on important coastal development and installation sites. For each subregion, source and release event considered, a histogram of the amount of volume beached is generated, also classifying individual events in terms of the corresponding arrival times. In addition, for each subregion considered, an inverse analysis is conducted to identify regions of dependence of the cumulative risk, estimated using the collection of all sources and events considered. The transport of oil around the NEOM shorelines is promoted by chaotic circulations and northwest winds in summer, and a dominant cyclonic eddy in winter. Hence, spills originating from release sources located close to the NEOM shorelines are characterized by large monthly variations in arrival times, ranging from less than a week to more than 2 weeks. Similarly, large variations in the volume fraction of beached oil, ranging from less then 50% to more than 80% are reported. The results of this study provide key information regarding the location of dominant oil spill risk sources, the severity of the potential release events, as well as the time frames within which mitigation actions may need to deployed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10951341 | PMC |
http://dx.doi.org/10.1038/s41598-024-57048-4 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!