Absorption peak decomposition of an inhomogeneous nanoparticle ensemble of hexagonal tungsten bronzes using the reduced Mie scattering integration method.

Sci Rep

Department of Product Planning and Development, Sumitomo Metal Mining Co., Ltd., 5-11-3 Shimbashi, Minato-Ku, Tokyo, 105-8716, Japan.

Published: March 2024

Recent optical analyses of cesium-doped hexagonal tungsten bronze have accurately replicated the absorption peak and identified both plasmonic and polaronic absorptions in the near-infrared region, which have been exploited in various technological applications. However, the absorption peaks of tungsten oxides and bronzes have not generally been reproduced well, including those of the homologous potassium- and rubidium-doped hexagonal tungsten bronzes that lacked evidence of polaronic subpeaks. The present study reports a modified and simplified Mie scattering integration method which incorporates the ensemble inhomogeneity effect and allows precise peak decomposition and determination of the physical parameters of nanoparticles. The decomposed peaks were interpreted in terms of electronic structures, screening effect, and modified dielectric functions. The analysis revealed that the plasma frequencies, polaron energies, and the number of oxygen vacancies decrease in the dopant order Cs → Rb → K. The coexistence of plasmonic and polaronic excitations was confirmed for all the alkali-doped hexagonal tungsten bronzes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10951275PMC
http://dx.doi.org/10.1038/s41598-024-57006-0DOI Listing

Publication Analysis

Top Keywords

hexagonal tungsten
16
tungsten bronzes
12
absorption peak
8
peak decomposition
8
mie scattering
8
scattering integration
8
integration method
8
plasmonic polaronic
8
tungsten
5
decomposition inhomogeneous
4

Similar Publications

In this study, the effect of feedstock concentration on the synthesis of WO nanostructures in a one-step hydrothermal process was investigated. According to our experiments, when titrating aqueous NaWO·2HO with HCl solutions of different concentrations to a constant pH of 1.5, after identical hydrothermal treatments at 180 °C, the morphology, crystal size and phase composition as well as the optical properties of the products could be tuned.

View Article and Find Full Text PDF

Ultra-broadband photodetectors (UB-PDs) are essential in medical applications, public safety monitoring, and various other fields. However, developing UB-PDs covering multiple bands from ultraviolet to medium infrared remains a challenge due to material limitations. Here, a mixed-dimensional heterojunction composed of 2D WS/monodisperse hexagonal stacking (MHS) 3D PdTe particles on 3D Si is proposed, capable of detecting light from 365 to 9600 nm.

View Article and Find Full Text PDF

A HTO-Type Nonlinear Optical Fluorophosphate with Ultrawide Bandgap.

Small

January 2025

State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China.

Compounds having hexagonal tungsten oxides (HTO) topology are of intense research interests owing to their potential functional properties, such as nonlinear optical (NLO) performances. However, most of the reported HTO-type compounds exhibit narrow optical bandgaps because of the d-d electronic transition of compositional d transition metals and lone pair electrons effect of Se/Te, which hinder their applications in the high-energy field, such as deep-ultraviolet (deep-UV) region. In this work, a new fluorophosphate, (NH)[ScF(PO)](POF) exhibiting HTO-topological structures is reported.

View Article and Find Full Text PDF

Revolutionizing Dual-Band Modulation and Superior Cycling Stability in GDQDs-Doped WO Electrochromic Films for Advanced Smart Window Applications.

Small

January 2025

State Key Laboratory of Electronic Thin Films and Integrated Devices, National Engineering Research Center of Electromagnetic Radiation Control Materials, School of Integrated Circuit Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China.

Dual-band tungsten oxide (WO) electrochromic films are extensively investigated, yet challenges persist regarding complex fabrication processes and limited cyclic stability. In this paper, a novel approach to prepare graphdiyne quantum dots (GDQDs) doped WO films with a hexagonal crystal structure, is presented. Structural characterization reveals that the GDQDs/WO possesses a coral-like, loose structure with high crystallinity due to the synergistic modulation of morphology and crystallinity.

View Article and Find Full Text PDF

Computational prediction of novel two-dimensional tungsten nitride superconductors.

J Phys Condens Matter

January 2025

Escuela de Artes Plásticas y Audiovisuales, Benemérita Universidad Autónoma de Puebla, Vía Atlixcáyotl No. 2499, Puebla, Pue C.P. 72810, Mexico.

Transition metal nitrides are well-known 3D superconductor materials. However, there is a lack of knowledge related to their two-dimensional (2D) counterparts, which have several potential technological applications. In this work, we predict, using an evolutionary algorithm coupled with a first-principles approach, a set of novel 2D superconductive structures based on tungsten nitride.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!