Neutron interferometry uniquely combines neutron imaging and scattering methods to enable characterization of multiple length scales from 1 nm to 10 µm. However, building, operating, and using such neutron imaging instruments poses constraints on the acquisition time and on the number of measured images per sample. Experiment time-constraints yield small quantities of measured images that are insufficient for automating image analyses using supervised artificial intelligence (AI) models. One approach alleviates this problem by supplementing annotated measured images with synthetic images. To this end, we create a data-driven simulation framework that supplements training data beyond typical data-driven augmentations by leveraging statistical intensity models, such as the Johnson family of probability density functions (PDFs). We follow the simulation framework steps for an image segmentation task including Estimate PDFs Validate PDFs Design Image Masks Generate Intensities Train AI Model for Segmentation. Our goal is to minimize the manual labor needed to execute the steps and maximize our confidence in simulations and segmentation accuracy. We report results for a set of nine known materials (calibration phantoms) that were imaged using a neutron interferometer acquiring four-dimensional images and segmented by AI models trained with synthetic and measured images and their masks.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10951284PMC
http://dx.doi.org/10.1038/s41598-024-56409-3DOI Listing

Publication Analysis

Top Keywords

measured images
16
neutron imaging
8
simulation framework
8
images
7
neutron
5
data-driven simulations
4
simulations training
4
training ai-based
4
segmentation
4
ai-based segmentation
4

Similar Publications

Background: We aimed to assess impairments on health-related quality of life, and mental health resulting from Retinal artery occlusion (RAO) with monocular visual field loss and posterior circulation ischemic stroke (PCIS) with full or partial hemianopia using patient-reported outcome measures (PROMs).

Methods: In a prospective study, consecutive patients with acute RAO on fundoscopy and PCIS on imaging were recruited during their surveillance on a stroke unit over a period of 15 months. Baseline characteristics were determined from medical records and interviews.

View Article and Find Full Text PDF

Previous research has shown that smoking tobacco is associated with changes or differences in brain volume and cortical thickness, resulting in a smaller brain volume and decreased cortical thickness in smokers compared with non-smokers. However, the effects of smokeless tobacco on brain volume and cortical thickness remain unclear. This study aimed to investigate whether the use of shammah, a nicotine-containing smokeless tobacco popular in Middle Eastern countries, is associated with differences in brain volume and thickness compared with non-users and to assess the influence of shammah quantity and type on these effects.

View Article and Find Full Text PDF

Background: Volume alterations in the parietal subregion have received less attention in Alzheimer's disease (AD), and their role in predicting conversion of mild cognitive impairment (MCI) to AD and cognitively normal (CN) to MCI remains unclear. In this study, we aimed to assess the volumetric variation of the parietal subregion at different cognitive stages in AD and to determine the role of parietal subregions in CN and MCI conversion.

Methods: We included 662 participants from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database, including 228 CN, 221 early MCI (EMCI), 112 late MCI (LMCI), and 101 AD participants.

View Article and Find Full Text PDF

Purpose: People living in supported accommodation often have complex care needs, including longer-term mental health illness and physical health comorbidities. Effective coordination between health and supported accommodation services is crucial to address these needs. However, evidence on the effectiveness of healthcare interventions in this setting remains limited.

View Article and Find Full Text PDF

Skin homeostasis is strongly dependent on its hydration levels, making skin water content measurement vital across various fields, including medicine, cosmetology, and sports science. Noninvasive diagnostic techniques are particularly relevant for clinical applications due to their minimal risk of side effects. A range of optical methods have been developed for this purpose, each with unique physical principles, advantages, and limitations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!