Despite the potential benefits of herbal medicines for therapeutic application in preventing and treating various metabolic disorders, the mechanisms of action were understood incompletely. Ginseng (Panax ginseng), a commonly employed plant as a dietary supplement, has been reported to play its hot property in increasing body temperature and improving gut health. However, a comprehensive understanding of the mechanisms by which ginseng regulates body temperature and gut health is still incomplete. This paper illustrates that intermittent supplementation with ginseng extracts improved body temperature rhythm and suppressed inflammatory responses in peripheral metabolic organs of propylthiouracil (PTU)-induced hypothermic rats. These effects were associated with changes in gut hormone secretion and the microbiota profile. The in-vitro studies in ICE-6 cells indicate that ginseng extracts can not only act directly on the cell to regulate the genes related to circadian clock and inflammation, but also may function through the gut microbiota and their byproducts such as lipopolysaccharide. Furthermore, administration of PI3K inhibitor blocked ginseng or microbiota-induced gene expression related with circadian clock and inflammation in vitro. These findings demonstrate that the hot property of ginseng may be mediated by improving circadian clock and suppressing inflammation directly or indirectly through the gut microbiota and PI3K-AKT signaling pathways.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10950852 | PMC |
http://dx.doi.org/10.1038/s41522-024-00498-5 | DOI Listing |
PLoS Genet
January 2025
School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, China.
A key property of the circadian clock is that it is reset by light to remain synchronized with the day-night cycle. An attractive model to explore light input to the circadian clock in vertebrates is the zebrafish. Circadian clocks in zebrafish peripheral tissues and even zebrafish-derived cell lines are entrainable by direct light exposure thus providing unique insight into the function and evolution of light regulatory pathways.
View Article and Find Full Text PDFPlant Cell Environ
January 2025
Department of Biology, Trivedi School of Biosciences, Ashoka University, Sonipat, India.
Circadian clocks execute temporal regulation of metabolism by modulating the timely expression of genes. Clock regulation of mRNA synthesis was envisioned as the primary driver of these daily rhythms. mRNA oscillations often do not concur with the downstream protein oscillations, revealing the importance to study protein oscillations.
View Article and Find Full Text PDFImmunology
January 2025
Oncology Department, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Second People's Hospital, Changzhou, China.
Circadian rhythm is a physiological process that oscillates in a 24 h cycle. It has a complex connection with the function of the human immune system and even with the development of tumours. Previous studies demonstrated the time-dependent effects of chemotherapy and radiotherapy; however, there are few studies on the timing effects of immunotherapy.
View Article and Find Full Text PDFNew Phytol
January 2025
Instituto de Investigaciones Forestales y Agropecuarias Bariloche, Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Bariloche - Consejo Nacional de Investigaciones Científicas y Técnicas (INTA EEA Bariloche-CONICET), San Carlos de Bariloche, Río Negro, R8403DVZ, Argentina.
Plant survival in a warmer world requires the timely adjustment of biological processes to cyclical changes in the new environment. Circadian oscillators have been proposed to contribute to thermal adaptation and plasticity. However, the influence of temperature on circadian clock performance and its impact on plant behaviour in natural ecosystems are not well-understood.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
January 2025
Department of Ophthalmology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China.
Purpose: Chronic jet lag (CJL) is known to disrupt circadian rhythms, which regulate various physiological processes, including ocular surface homeostasis. However, the specific effects of CJL on lacrimal gland function and the underlying cellular mechanisms remain poorly understood.
Methods: A CJL model was established using C57BL/6J mice.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!