Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objective: Extraction of digital markers from passive sensors placed in homes is a promising method for understanding real-world behaviors. In this study, machine learning (ML) and multilevel modeling (MLM) are used to examine types of digital markers and whether smart home sensors can predict cognitive functioning, lifestyle behaviors, and contextual factors measured through ecological momentary assessment (EMA).
Method: Smart home sensors were installed in the homes of 44 community-dwelling midlife and older adults for 3-4 months. Sensor data were categorized into eight digital markers. Participants responded to iPad-delivered EMA prompts 4×/day for 2 wk. Prompts included an -back task and survey on recent (past 2 h) lifestyle and contextual factors.
Results: ML marker rankings revealed that sensor counts (indicating increased activity) and time outside the home were among the most influential markers for all survey questions. Additionally, MLM revealed for every 1000 sensor counts, mental sharpness, social, physical, and cognitive EMA responses increased by 0.134-0.155 points on a 5-point scale. For every additional 30-minutes spent outside home, social, physical, and cognitive EMA responses increased by 0.596, 0.472, and 0.157 points. Advanced ML joint classification/regression significantly predicted EMA responses from smart home digital markers with error of 0.370 on a 5-point scale, and -back performance with a normalized error of 0.040.
Conclusion: Results from ML and MLM were complimentary and comparable, suggesting that machine learning may be used to develop generalized models to predict everyday cognition and track lifestyle behaviors and contextual factors that impact health outcomes using smart home sensor data.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11411016 | PMC |
http://dx.doi.org/10.1080/13854046.2024.2330143 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!