[Determination of three new herbicide residues in soil, sediment and water by liquid chromatography-tandem mass spectrometry].

Se Pu

State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.

Published: March 2024

AI Article Synopsis

  • - Herbicides are widely used in various fields to control harmful plants, but their effective usage is only 20%-30%, leading to environmental contamination and potential health risks due to residues in air, soil, and water.
  • - This study developed a method using liquid chromatography-tandem mass spectrometry (LC-MS/MS) to detect residues of three specific herbicides (isoxaflutole, metazachlor, and saflufenacil) in environmental samples.
  • - The research optimized detection parameters and sample preparation processes, achieving accurate measurements within the concentration range of 0.0005-0.02 mg/L, demonstrating reliable linear responses and acceptable matrix effects for the herbicides analyzed.

Article Abstract

Herbicides play an important role in preventing and controlling weeds and harmful plants and are increasingly used in agriculture, forestry, landscaping, and other fields. However, the effective utilization rate of herbicides is only 20%-30%, and most herbicides enter the atmosphere, soil, sediment, and water environments through drift, leaching, and runoff after field application. Herbicide residues in the environment pose potential risks to ecological safety and human health. Therefore, establishing analytical methods to determine herbicide residues in environmental samples is of great importance. In this study, an analytical method based on liquid chromatography-tandem mass spectrometry (LC-MS/MS) in positive electrospray ionization mode (ESI) was developed for the determination of isoxaflutole, metazachlor, and saflufenacil residues in soil, sediment, and water. The instrumental detection parameters, including electrospray ionization mode, mobile phase, and chromatographic column, were optimized. The mobile phases were methanol (A) and 0.1% formic acid aqueous solution (B). Gradient elution was performed as follows: 0-1.0 min, 60%A; 1.0-2.0 min, 60%A-90%A; 2.0-3.0 min, 90%A; 3.0-4.0 min, 90%A-60%A; 4.0-5.0 min, 60%A. The samples were salted after extraction with acetonitrile and cleaned using a C solid-phase extraction column. Different solid-phase extraction columns and leaching conditions were investigated during sample pretreatment. Working curves in the neat solvent and matrix were constructed by plotting the measured peak areas as a function of the concentrations of the analytes in the neat solvent and matrix. Good linearities were found for isoxaflutole, metazachlor, and saflufenacil in the solvent and matrix-matched standards in the range of 0.0005-0.02 mg/L, with ≥0.9961. The matrix effects of the three herbicides in soil, sediment, and water ranged from -10.1% to 16.5%. The limits of detection (LODs, =3) for isoxaflutole, metazachlor, and saflufenacil were 0.05, 0.01, and 0.02 μg/kg, respectively. The limits of quantification (LOQs, =10) for isoxaflutole, metazachlor, and saflufenacil were 0.2, 0.05, and 0.05 μg/kg, respectively. The herbicides were applied to soil, sediment, and water at spiked levels of 0.005, 0.1, and 2.0 mg/kg, respectively. The average recoveries for isoxaflutole, metazachlor, and saflufenacil in soil, sediment, and water were in the ranges of 77.2%-101.9%, 77.9%-105.1%, and 80.8%-107.1%, respectively. The RSDs for isoxaflutole, metazachlor, and saflufenacil were in the ranges of 1.4%-12.8%, 1.2%-7.7%, and 1.5%-11.5%, respectively. The established method was used to analyze actual samples collected from four different sites in Zhejiang Province (Xiaoshan, Taizhou, Dongyang, and Yuhang) and one site in Heilongjiang (Jiamusi). The proposed method is simple, rapid, accurate, stable, and highly practical. It can be used to detect isoxaflutole, metazachlor, and saflufenacil residues in soil, sediment, and water and provides a reference for monitoring the residual pollution and environmental behavior of herbicides.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10951813PMC
http://dx.doi.org/10.3724/SP.J.1123.2023.07006DOI Listing

Publication Analysis

Top Keywords

soil sediment
28
sediment water
28
isoxaflutole metazachlor
28
metazachlor saflufenacil
28
herbicide residues
12
residues soil
12
liquid chromatography-tandem
8
chromatography-tandem mass
8
electrospray ionization
8
ionization mode
8

Similar Publications

Urban rivers are the main water bodies humans frequently come into contact with, so the risks posed are closely monitored. Antibiotic resistance genes (ARGs) residues in reclaimed water pose serious risks to human health. There are urgent needs to improve the understanding of distribution of and risks posed by ARGs in urban rivers.

View Article and Find Full Text PDF

Acetochlor degradation in anaerobic microcosms with hyporheic sediments: Insights from biogeochemical data, transformation products, and isotope analysis.

Water Res

December 2024

Hubei Key Laboratory of Yangtze River Basin Environmental Aquatic Science, School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074, Wuhan, PR China. Electronic address:

Steep redox gradients and diverse microbial communities in the anaerobic hyporheic zone create complex pathways for the degradation of herbicides, often linked to various terminal electron-accepting processes (TEAPs). Identifying the degradation pathways and their controlling factors under various TEAPs is of great significance for understanding mechanisms of water purification in the hyporheic zone. However, current research on herbicides in this area remains insufficient.

View Article and Find Full Text PDF

Unravelling the outcome of L-glutaminase produced by Streptomyces sp. strain 5 M as an anti-neoplasm activity.

Microb Cell Fact

January 2025

Molecular Biology Department, Biotechnology Research Institute, National Research Center, El-Buhouth St. 33, Dokki, P.O.12622, Giza, Egypt.

Background: Actinomycetes are a well-known example of a microbiological origin that may generate a wide variety of chemical structures. As excellent cell factories, these sources are able to manufacture medicines, agrochemicals, and enzymes that are crucial.

Results: In this study, about 34 randomly selected Streptomyces isolates were discovered in soil, sediment, sea water, and other environments.

View Article and Find Full Text PDF

In this study, a large drinking water reservoir (Fengshuba Reservoir) was chosen as a representative case, and the bacterial communities in the sediments and soils of Water-level fluctuating zone (WLFZ) as well as their responses to heavy metals (HMs) and polycyclic aromatic hydrocarbons (PAHs) were systematically investigated. The results indicated that the abundance and diversity of the bacterial community obviously changed with seasonal hydrological variations in sediments, and the absolute abundance and composition of bacteria community differed significantly between the sediment phase and soil phase. Bacteria with the ability to degrade pollutants rapidly proliferate and gain ascendancy in the soil phase, with Burkholderia-Caballeronia-Paraburkholderia (B-C-P) and Bradyrhizobium forming the core of the largest community.

View Article and Find Full Text PDF

Emerging contaminants in estuarine sediments, such as bis(2-ethylhexyl) phthalate (DEHP) and titanium dioxide nanoparticles (nTiO), pose ecotoxicological risks that may be exacerbated by co-contamination. This study investigated the impacts of DEHP, nTiO, and their combinations at environmentally relevant concentrations (1, 10, and 100 μg/g) on the soil nematode Caenorhabditis elegans in estuarine-like sediment (14.25‰ salinity).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!