Aims: This study aimed to assess the impact of rocket (Eruca sativa) extract on Verticillium wilt in eggplants, explore rhizospheric microorganisms for disease biocontrol, and evaluate selected strains' induced systemic resistance (ISR) potential while characterizing their genomic and biosynthetic profiles.
Methods And Results: Rocket extract application led to a significant reduction in Verticillium wilt symptoms in eggplants compared to controls. Isolated microorganisms from treated soil, including Paraburkholderia oxyphila EP1, Pseudomonas citronellolis EP2, Paraburkholderia eburnea EP3, and P. oxyphila EP4 and EP5, displayed efficacy against Verticillium dahliae, decreasing disease severity and incidence in planta. Notably, strains EP3 and EP4 triggered ISR in eggplants against V. dahliae. Genomic analysis unveiled shared biosynthetic gene clusters, such as ranthipeptide and non-ribosomal peptide synthetase-metallophore types, among the isolated strains. Additionally, metabolomic profiling of EP2 revealed the production of metabolites associated with amino acid metabolism, putative antibiotics, and phytohormones.
Conclusions: The application of rocket extract resulted in a significant reduction in Verticillium wilt symptoms in eggplants, while the isolated microorganisms displayed efficacy against V. dahliae, inducing systemic resistance and revealing shared biosynthetic gene clusters, with metabolomic profiling highlighting potential disease-suppressing metabolites.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jambio/lxae070 | DOI Listing |
Int J Mol Sci
December 2024
College of Agricultural, Tarim University, Alar 843300, China.
wilt (VW) caused by (Vd) is a devastating fungal cotton disease characterized by high pathogenicity, widespread distribution, and frequent variation. It leads to significant losses in both the yield and quality of cotton. Identifying key non-synonymous single nucleotide polymorphism (SNP) markers and crucial genes associated with VW resistance in and , and subsequently breeding new disease-resistant varieties, are essential for VW management.
View Article and Find Full Text PDFFungal Genet Biol
January 2025
Team of Crop Verticillium wilt, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China. Electronic address:
The vascular wilt fungus Verticillium dahliae is a destructive soil-borne pathogen that causes yield loss on various economically important crops. Membrane-spanning sensor protein SLN1 have been demonstrated to contribute to virulence in varying degrees among numerous devastating fungal pathogens. However, the biological function of SLN1 in V.
View Article and Find Full Text PDFMicroorganisms
November 2024
College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010019, China.
Sunflower Wilt (SVW) caused by is a significant threat to sunflower production in China. This soilborne disease is difficult to control. It has been observed that delayed sowing reduces the severity of SVW on different varieties and across various locations.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
The Key Laboratory of Oasis Eco-Agriculture, Agriculture College, Shihezi University, Shihezi 832000, China.
is a soil-borne phytopathogenic fungus causing destructive Verticillium wilt disease that greatly threats cotton production worldwide. The mechanism of cotton resistance to Verticillium wilt is very complex and requires further research. In this study, RNA-sequencing was used to investigate the defense responses of cotton leaves using varieties resistant (Zhongzhimian 2, or Z2) or susceptible (Xinluzao 7, or X7) to .
View Article and Find Full Text PDFJ Fungi (Basel)
December 2024
College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010010, China.
, previously classified in the genus until 2007, is an attenuated pathogen known to provide cross-protection against wilt in various crops. To investigate the potential mechanisms underlying its reduced virulence, we conducted genome sequencing, annotation, and a comparative genome analysis of GnVn.1 (GnVn.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!