Traditional heterogeneous catalysts are affected in the catalytic hydrogenation of PS by the scale effect, viscosity effect, adhesion effect, and conformational effect, resulting in poor activity and stability. Monolithic Pd-CNTs@FN catalysts could eliminate or weaken the impact of these negative effects. We grew nitrogen-doped carbon nanotubes (NCNTs) on monolithic-foamed nickel (FN) and investigate their growth mechanism. Meanwhile, the feasibility of using the NCNTs@FN carrier for PS hydrogenation reaction was also verified. The growth of NCNTs on FN can be divided into 3 stages: initial growth stage, stable growth stage, and supersaturation stage. Finally, a three-layer structure of NCNT layer, dense carbon layer, and FN skeleton is formed. Two types of structures, nickel-doped carbon nanotubes (NiCNTs) and C-Ni alloy, are formed by combining C and Ni, while four nitrogen-doped structures, N, N, N, and N, are formed by C and N. The prepared carrier exhibited an extremely outstanding specific surface area (2.829 × 10 cm/g) and strength (no NCNTs falling off after 24 h 500 rpm agitation), as well as high catalytic activity for PS hydrogenation after loaded with Pd (2.13 ± 0.95 nm), with a TOF of up to 27.6 g/(g•h). After 8 repetitions of the catalyst, there was no significant decrease in activity. This proves the excellent performance of Pd-NCNTs@FN in polymer hydrogenation reactions, laying a solid foundation for further research on the mechanism of NCNTs promoting PS hydrogenation and regulating the growth of NCNTs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.3c03678 | DOI Listing |
Doping strategies have been recognized as effective approaches for developing cost-effective and durable catalysts with enhanced reactivity and selectivity in the electrochemical synthesis of value-added compounds directly from CO. However, the reaction mechanism and the specific roles of heteroatom doping, such as N doping, in advancing the CO reduction reaction are still controversial due to the lack of precise control of catalyst surface microenvironments. In this study, we investigated the effects of N doping on the performances for electrochemically converting CO to CO over Ni@NCNT/graphene hybrid structured catalysts (Ni@NCNT/Gr).
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
School of Chemistry and Chemical Engineering & Inner Mongolia Engineering and Technology Research Center for Catalytic Conversion and Utilization of Carbon Resource Molecules, Inner Mongolia University, 49 Xilinguole South Road, Hohhot, 010020, P. R. China.
Electrocatalytic glycerol oxidation reaction (GOR) to produce high-value formic acid (FA) is hindered by high formation potential of active species and sluggish C-C bond cleavage kinetics. Herein, Ni single-atom (Ni) and Co single-atom (Co) dual sites anchored on nitrogen-doped carbon nanotubes embedded with NiCo alloy (NiCo@NiCo-NCNTs) are constructed for electrochemical GOR. Remarkably, it can reach 10 mA cm at a low potential of 1.
View Article and Find Full Text PDFChemosphere
June 2024
Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Jinan, 250014, China. Electronic address:
Peracetic acid (PAA) has garnered significant attention as a novel disinfectant owing to its remarkable oxidative capacity and minimal potential to generate byproducts. In this study, we prepared a novel catalyst, denoted as cobalt modified nitrogen-doped carbon nanotubes (Co@N-CNTs), and evaluated it for PAA activation. Modification with cobalt nanoparticles (∼4.
View Article and Find Full Text PDFLangmuir
April 2024
UNILAB, State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
Traditional heterogeneous catalysts are affected in the catalytic hydrogenation of PS by the scale effect, viscosity effect, adhesion effect, and conformational effect, resulting in poor activity and stability. Monolithic Pd-CNTs@FN catalysts could eliminate or weaken the impact of these negative effects. We grew nitrogen-doped carbon nanotubes (NCNTs) on monolithic-foamed nickel (FN) and investigate their growth mechanism.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
March 2024
School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China.
A series of transition metal (Co, Ni, Fe) nanoparticles were confined in N-doped carbon nanotubes (NCNTs) prepared (Co@NCNTs, Ni@NCNTs, and Fe@NCNTs) by the polymerization method. The structure and composition of catalysts were well characterized. The catalytic activity of catalysts for activating peroxymonosulfate (PMS) was conducted via acid orange 7 (AO7) degradation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!