Nowadays biopolymers play an important role in packaging materials due to their protection properties against physical and chemical degradation or mechanical resistance. In this study, sodium pentaborate anhydride (BNaO), eggshell (CaCO) nanoparticles, and natural rosin additives were introduced to pure PLA to produce a biofilm protecting from UV rays. The impact of the preparation method of hybrid biocomposite films was carried out based on the polymer casting method and using in the first case only magnetic mixing whereas magnetic mixing coupled with ultrasonic homogenizer was used in the second case. All biocomposite films were obtained for a nanoparticle content fixed at 7.5 wt% and various rosin rates (1, 5, 10, and 40 wt%). This study aims to expand the UV protection zone in PLA films. The thermal and mechanical properties, transmittance of UV-visible rays, microstructure analysis, and contact angle values were evaluated to detect the effect of the preparation method on the final properties. The results showed that the homogeneous distribution of the particles was more effective using an ultrasonic homogenizer. The increase of the rosin amount exhibited a reduction of the UV-visible light transmittance and the wettability was observed, demonstrating a potential use of these films in packaging.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2024.130965DOI Listing

Publication Analysis

Top Keywords

natural rosin
8
preparation method
8
biocomposite films
8
magnetic mixing
8
ultrasonic homogenizer
8
films
5
impact production
4
production methods
4
properties
4
methods properties
4

Similar Publications

Cellulose-based paper is inherently poor in hydrophobicity and mechanical strength, limiting its practical applications in daily life such as packaging materials, water-resistant labels, and disposable tableware. This study aimed to develop an effective and eco-friendly strategy to address these limitations by enhancing the hydrophobicity and mechanical properties of cellulose paper. To achieve this, an internal sizing agent was prepared by combining (3-glycidoxypropyl) trimethoxy (GPS) with natural rosin.

View Article and Find Full Text PDF

The proteomic response of to amphotericin B (AmB) reveals the involvement of the RTA-like protein RtaA in AmB resistance.

Microlife

December 2024

Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Adolf-Reichwein-Str. 23, 07745 Jena, Germany.

The polyene antimycotic amphotericin B (AmB) and its liposomal formulation AmBisome belong to the treatment options of invasive aspergillosis caused by . Increasing resistance to AmB in clinical isolates of species is a growing concern, but mechanisms of AmB resistance remain unclear. In this study, we conducted a proteomic analysis of exposed to sublethal concentrations of AmB and AmBisome.

View Article and Find Full Text PDF

Background: Surfactants regulate the interaction between pesticide droplets and the surfaces of plants on which they are sprayed. The influence of the key structural functional groups of surfactants on the interaction between pesticide droplets and hydrophobic pear leaves has not been explored. The behavior of Imidacloprid (Imid) droplets regulated by cationic quaternary ammonium surfactants with different structures on hydrophobic pear leaves and their bouncing dynamics were studied.

View Article and Find Full Text PDF

To mitigate the impact of traditional chemical pesticides on environment, and achieve sustainable crop protection, 24 eco-friendly rosin-based sulfonamide derivatives were synthesized and developed. The in vitro activity assessment showed that compound 4X (Co. 4X) exhibited excellent fungicidal activity against V.

View Article and Find Full Text PDF

Construction of Iron-Modified Lignin-Based Nanomicrocapsules for Enhancing the Functionality of Natural Product-Based Pesticides.

Small

November 2024

Jiangsu Province Key Laboratory of Biomass Energy and Materials, College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China.

To address the issue of low pesticide utilization owing to poor dispersibility, low leaf surface adhesion, and poor transport within plants, this study exploits electrostatic interactions between sodium lignosulfonate (SL) and dodecyltrimethylammonium chloride (DTAC) to induce self-assembly, followed by iron ion (Fe) chelation and loading with a natural product-based pesticide, rosin-based triazole derivative (RTD), yielding RTD@SL-DTAC-Fe nanomicrocapsules (NMs). It is worth noting that the presence of Fe enhances the dispersibility of the NMs. The water dispersibility and photostability of RTD are significantly improved after encapsulation, and a stimulus response to laccase is achieved.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!