Cellulose nanocrystals (CNCs) can form a liquid crystal film with a chiral nematic structure by evaporative-induced self-assembly (EISA). It has attracted much attention as a new class of photonic liquid crystal material because of its intrinsic, unique structural characteristics, and excellent optical properties. However, the CNCs-based photonic crystal films are generally prepared via the physical crosslinking strategy, which present water sensitivity. Here, we developed CNCs-g-PAM photonic crystal film by combining free radical polymerization and EISA. FT-IR, SEM, POM, XRD, TG-DTG, and UV-Vis techniques were employed to characterize the physicochemical properties and microstructure of the as-prepared films. The CNCs-g-PAM films showed a better thermo-stability than CNCs-based film. Also, the mechanical properties were significantly improved, viz., the elongation at break was 9.4 %, and tensile strength reached 18.5 Mpa, which was a much better enhancement than CNCs-based film. More importantly, the CNCs-g-PAM films can resist water dissolution for more than 24 h, which was impossible for the CNCs-based film. The present study provided a promising strategy to prepare CNCs-based photonic crystal film with high flexibility, water resistance, and optical properties for applications such as decoration, light management, and anti-counterfeiting.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2024.130793 | DOI Listing |
Nano Lett
January 2025
State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, 100871 Beijing, China.
Strong coupling between nanocavities and single excitons at room temperature is important for studying cavity quantum electrodynamics. However, the coupling strength is highly dependent on the spatial light-confinement ability of the cavity, the number of involved excitons, and the orientation of the electric field within the cavity. By constructing a hybrid cavity with a one-dimensional photonic crystal cavity and a plasmonic nanocavity, we effectively improve the quality factor, reduce the mode volume, and control the direction of the electric field using Bloch surface waves.
View Article and Find Full Text PDFJ Mater Chem B
January 2025
Smart Photonic Materials, Faculty of Engineering and Natural Sciences, Tampere University, Tampere, P.O. Box 541, FI-33101, Finland.
As biomimicry advances, liquid crystal elastomers (LCEs) are gaining attention for their (multi-)stimuli-responsiveness and reversible shape morphing. Introduction of dynamic bonds into the LCEs provides versatile means towards programmable shape morphing and adaptation to environmental cues, and new designs for dynamic LCEs are actively sought for. Here, we present a supramolecular LCE that integrates shape memory programming, humidity sensitivity, and photochemical actuation.
View Article and Find Full Text PDFIntroduction: The use of urine cytobacteriological examination is a common and essential practice in medicine which helps guide therapeutic management in case of urinary tract infection. The cytological examination of urine samples can be done using the manual (microscopic) or automated technique. The automated approach, which involves the use of artificial intelligence, is faster, more reliable, and more efficient for laboratories.
View Article and Find Full Text PDFNat Commun
January 2025
Key Laboratory for Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
The preparation of single-crystal polymers with circularly polarized luminesce (CPL) remains a challenging task in chemistry and materials science. Herein, we present the single-crystal-to-single-crystal topochemical photopolymerization of a chiral organic salt to achieve this goal. The in-situ reaction of 1,4-bis((E)-2-(pyridin-4-yl)vinyl)benzene (1) with chiral (+)- or (-)-camphorsulfonic acid (CSA) gives the monomer crystal 1[( + )/( - )-CSA] showing yellow CPL with a high luminescent dissymmetry factor |g| of 0.
View Article and Find Full Text PDFNat Commun
January 2025
State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, and School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou, China.
High intrinsic detection efficiency is as decisive as high energy resolution. Scaling up detector volume has presented great challenges, preventing perovskite semiconductors from reaching sufficient detection efficiency. We report a hole-only virtual-Frisch-grid CsPbBr detector up to 2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!