Photoisomerization and thermal reconstruction induced supramolecular chirality inversion in nanofiber determined by minority isomer.

Spectrochim Acta A Mol Biomol Spectrosc

Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, China. Electronic address:

Published: May 2024

Here, amphiphile GCH based on glutamide-cyanostilbene is designed and synthesized, it is found that it can assembly in acetonitrile, and shows circular dichroism signals. After Z-E isomerizaition by UV irradiation, the CD signal of the assembly can be inverted. Unexpectedly, after another heating and cooling process, the circular dichroism signals can be totally inverted even though the E-isomers are in minority. Finally, the molecular dynamics (MD) simulations deeply elucidate the supramolecuar chirality inversion mechanism. This work brings some new insights into the control of chirality inversion, which may provide a perspective for the smart chiroptical materials construction.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2024.124138DOI Listing

Publication Analysis

Top Keywords

chirality inversion
12
circular dichroism
8
dichroism signals
8
photoisomerization thermal
4
thermal reconstruction
4
reconstruction induced
4
induced supramolecular
4
supramolecular chirality
4
inversion nanofiber
4
nanofiber determined
4

Similar Publications

Gold(I)-catalyzed intramolecular hydroarylation of dialkynyl(biaryl)phosphine oxides provided versatile benzo-fused phosphepine oxides. O-exo adducts were obtained as the major product, and O-endo adducts were the minor product. O-exo and O-endo indicate the position of an oxygen atom with respect to the central phosphepine framework.

View Article and Find Full Text PDF

Conformational versatility among crystalline solids of L-phenylalanine derivatives.

Acta Crystallogr C Struct Chem

February 2025

Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Piso 3, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina.

In this study, we present a new N-derivative of L-phenylalanine with 2-naphthaldehyde (PN), obtained by the Schiff base formation procedure and its subsequent reduction. This compound was crystallized as a zwitterion {2-[(naphthalen-2-ylmethyl)azaniumyl]-3-phenylpropanoate, CHNO}, as an anion in a sodium salt (catena-poly[[diaquasodium(I)-di-μ-aqua] 2-[(naphthalen-2-ylmethyl)amino]-3-phenylpropanoate monohydrate], {[Na(HO)](CHNO)·HO}), as a cation in a chloride salt [(1-carboxy-2-phenylethyl)(naphthalen-2-ylmethyl)azanium chloride acetic acid monosolvate, CHNO·Cl·CHCOOH], and additionally acting as a ligand in the pentacoordinated zinc compound aquabis{2-[(naphthalen-2-ylmethyl)amino]-3-phenylpropanoato-κO}zinc(II), [Zn(CHNO)(HO)] or [Zn(PN)(HO)], denoted (PN-Zn), with the amino acid derivative in its carboxylate form.

View Article and Find Full Text PDF

Chirality, a pervasive form of symmetry, is intimately connected to the physical properties of solids, as well as the chemical and biological activity of molecular systems. However, inducing chirality in a nonchiral material is challenging because this requires that all mirrors and all roto-inversions be simultaneously broken. Here, we show that chirality of either handedness can be induced in the nonchiral piezoelectric material boron phosphate (BPO) by irradiation with terahertz pulses.

View Article and Find Full Text PDF

Designing Chiral Organometallic Nanosheets with Room-Temperature Multiferroicity and Topological Nodes.

Nano Lett

January 2025

Key Laboratory of Materials Physics, Institute of Solid State Physics, Hefei Institutes of Physical Science (HFIPS), Chinese Academy of Sciences, Hefei, Anhui 230031, China.

Two-dimensional (2D) room-temperature chiral multiferroic and magnetic topological materials are essential for constructing functional spintronic devices, yet their number is extremely limited. Here, by using the chiral and polar HPP (HPP = 4-(3-hydroxypyridin-4-yl)pyridin-3-ol) as an organic linker and transition metals (TM = Cr, Mo, W) as nodes, we predict a class of 2D TM(HPP) organometallic nanosheets that incorporate homochirality, room-temperature magnetism, ferroelectricity, and topological nodes. The homochirality is introduced by chiral HPP linkers, and the change in structural chirality induces a topological phase transition of Weyl phonons.

View Article and Find Full Text PDF

1.5D Chiral Perovskites Mediated by Hydrogen-Bonding Network with Remarkable Spin-Polarized Property.

Angew Chem Int Ed Engl

January 2025

School of Science, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.

In this study, we developed new chiral hybrid perovskites, (R/S-MBA)(GA)PbI, by incorporating achiral guanidinium (GA) and chiral R/S-methylbenzylammonium (R/S-MBA) into the perovskite framework. The resulting materials possess a distinctive structural configuration, positioned between 1D and 2D perovskites, which we describe as 1.5D.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!