Bioinspired superhydrophobic surfaces with silver and nitric oxide-releasing capabilities to prevent device-associated infections and thrombosis.

J Colloid Interface Sci

School of Chemical, Materials, and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA 30602, USA; Pharmaceutical and Biomedical Sciences Department, College of Pharmacy, University of Georgia, Athens, GA 30602, USA. Electronic address:

Published: June 2024

Bacteria-associated infections and thrombus formation are the two major complications plaguing the application of blood-contacting medical devices. Therefore, functionalized surfaces and drug delivery for passive and active antifouling strategies have been employed. Herein, we report the novel integration of bio-inspired superhydrophobicity with nitric oxide release to obtain a functional polymeric material with anti-thrombogenic and antimicrobial characteristics. The nitric oxide release acts as an antimicrobial agent and platelet inhibitor, while the superhydrophobic components prevent non-specific biofouling. Widely used medical-grade silicone rubber (SR) substrates that are known to be susceptible to biofilm and thrombus formation were dip-coated with fluorinated silicon dioxide (SiO) and silver (Ag) nanoparticles (NPs) using an adhesive polymer as a binder. Thereafter, the resulting superhydrophobic (SH) SR substrates were impregnated with S-nitroso-N-acetylpenicillamine (SNAP, an NO donor) to obtain a superhydrophobic, Ag-bound, NO-releasing (SH-SiAgNO) surface. The SH-SiAgNO surfaces had the lowest amount of viable adhered E. coli (> 99.9 % reduction), S. aureus (> 99.8 % reduction), and platelets (> 96.1 % reduction) as compared to controls while demonstrating no cytotoxic effects on fibroblast cells. Thus, this innovative approach is the first to combine SNAP with an antifouling SH polymer surface that possesses the immense potential to minimize medical device-associated complications without using conventional systemic anticoagulation and antibiotic treatments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11025530PMC
http://dx.doi.org/10.1016/j.jcis.2024.03.082DOI Listing

Publication Analysis

Top Keywords

thrombus formation
8
nitric oxide
8
oxide release
8
bioinspired superhydrophobic
4
superhydrophobic surfaces
4
surfaces silver
4
silver nitric
4
nitric oxide-releasing
4
oxide-releasing capabilities
4
capabilities prevent
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!