Enzyme-based glycosylation is of great interest in the context of natural products decoration. Yet, its industrial application is hindered by optimisation difficulties and hard-to-standardise productivities. In this study, five sugar nucleotide-dependent glucosyltransferases from different origins (bacterial, plant and fungal) were coupled with soy sucrose synthase (GmSuSy) to create a set of diverse cascade biocatalysts for flavonoid glucosylation, which evaluation brought new insights into the field. Investigations into co-expression conditions and reaction settings enabled to define optimal induction temperature (25 °C) and uridine diphosphate (UDP) concentration (0.5 mM) for all tested pairs of enzymes. Moreover, the influence of pH and substrate concentration on the monoglucosylated product distribution was detected and analysed. The utilisation of crude protein extracts as a cost-effective source of catalysts unveiled their glycosidase activity against flavonoid glucosides, resulting in decreased productivity, which, to our knowledge, has not previously been discussed in such a context. Additionally, examination of the commercially available EziG immobilisation resins showed that selection of suitable carrier for solid catalyst production can be problematic and not only enzyme's but also reagent's properties have to be considered. Flavonoids, due to their complexation and hydrophobic properties, can adsorb on different types of surfaces, including divalent metal ions required for IMAC based immobilisation, necessitating detailed examination of the resins while the catalysis design.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bioorg.2024.107287 | DOI Listing |
Ying Yong Sheng Tai Xue Bao
October 2024
College of Plant Protection, Shandong Agricultural University, Tai'an 271018, Shandong, China.
We investigated the effects of exogenous abscisic acid (ABA) on grain filling, starch accumulation, and endogenous hormones in maize (both the heat-tolerant maize variety Zhengdan 958 (ZD958) and the heat-sensitive variety Xianyu 335 (XY335)) under early post-anthesis high temperature stress by simulating high temperature stress for a period of 6 to 12 days post-anthesis in 2022 and 2023. There were three treatments: spraying water at ambient temperature as the control, spraying water at high temperature, and spraying ABA at high temperature. The results showed that early post-anthesis high temperature stress resulted in a significant reduction in grain weight and yield in maize, with XY335 showing a greater reduction than ZD958.
View Article and Find Full Text PDFPlant Physiol Biochem
December 2024
Guizhou Engineering Research Center for Fruit Crops, Agricultural College, Guizhou University, Guiyang, 550025, People's Republic of China. Electronic address:
Sugar content is an important factor that largely determines fruit quality. 'Fengtang' plum (Prunus salicina Lindl.) is recognized for its high soluble sugar content, and the Sucrose synthase 4 (PsSUS4) functions as the controlling step in sucrose accumulation.
View Article and Find Full Text PDFBMC Plant Biol
December 2024
College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China.
Melatonin (MT) can improve plant resistance and fruit quality. The mechanism by which MT affects soluble sugar and organic acids accumulation in drupe fruits is not clear. In this study, 100 µmol/L MT was sprayed on the leaves of plum trees at the second stage of rapid fruit expansion (90 and 97 d after flowering), and the effects of MT on plum fruit quality and its effects on the soluble sugar-organic acid metabolism were investigated.
View Article and Find Full Text PDFProtoplasma
December 2024
School of Life Sciences, Yunnan Normal University, Kunming, 650092, People's Republic of China.
Sucrose (SUC) is a signaling molecule with multiple physiological functions. G protein is a kind of receptor that converts extracellular first messenger into intracellular second messenger. However, it is little known that SUC interplays with G protein signaling in maize thermotolerance.
View Article and Find Full Text PDFPlants (Basel)
November 2024
Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China.
Tartary buckwheat is characterized by its numerous inflorescences; however, the uneven distribution of resources can lead to an overload in certain areas, significantly limiting plant productivity. Plant growth regulators effectively modulate plant growth and development. This study investigated the effects of three concentrations of brassinosteroids (EBR) on the Tartary buckwheat cultivar with high seed-setting rates, specifically Chuanqiao No.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!