Gypenoside XLIX alleviates acute liver injury: Emphasis on NF-κB/PPAR-α/NLRP3 pathways.

Int Immunopharmacol

Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China. Electronic address:

Published: April 2024

Liver is one of the vital organs in the human body and liver injury will have a very serious impact on human damage. Gypenoside XLIX is a PPAR-α activator that inhibits the activation of the NF-κB signaling pathway. The components of XLIX have pharmacological effects such as cardiovascular protection, antihypoxia, anti-tumor and anti-aging. In this study, we used cecum ligation and puncture (CLP) was used to induce in vivo mice hepatic injury, and lipopolysaccharide (LPS)-induced inflammation in RAW264.7 cells, evaluated whether Gypenoside XLIX could have a palliative effect on sepsis-induced acute liver injury via NF-κB/PPAR-α/NLRP3. In order to gain insight into these mechanisms, six groups were created in vivo: the Contol group, the Sham group, the CLP group, the CLP + XLIX group (40 mg/kg) and the Sham + XLIX (40 mg/kg) group, and the CLP + DEX (2 mg/kg) group. Three groups were created in vitro: Control, LPS, LPS + XLIX (40 μM). The analytical methods used included H&E staining, qPCR, reactive oxygen species (ROS), oil red O staining, and Western Blot. The results showed that XLIX attenuated hepatic inflammatory injury in mice with toxic liver disease through inhibition of the TLR4-mediated NF-κB pathway, attenuated lipid accumulation through activation of PPAR-α, and attenuated hepatic pyroptosis by inhibiting NLRP3 production. Regarding the imbalance between oxidative and antioxidant defenses due to septic liver injury, XLIX reduced liver oxidative stress-related biomarkers (ALT, AST), reduced ROS accumulation, decreased the amount of malondialdehyde (MDA) produced by lipid peroxidation, and increased the levels of antioxidant enzymes such as glutathione (GSH) and catalase (CAT). Our results demonstrate that XLIX can indeed attenuate septic liver injury. This is extremely important for future studies on XLIX and sepsis, and provides a potential pathway for the treatment of acute liver injury.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.intimp.2024.111872DOI Listing

Publication Analysis

Top Keywords

liver injury
24
gypenoside xlix
12
acute liver
12
liver
9
injury
8
groups created
8
attenuated hepatic
8
septic liver
8
xlix
7
group
6

Similar Publications

Farnesol (FAR) is a sesquiterpene alcohol that exists in many fruits and vegetables and possesses promising anti-inflammatory and antioxidant activities. Cadmium (Cd) is an environmental pollutant known for its serious health effects. Liver injury associated with oxidative stress is a hazardous consequence of exposure to Cd.

View Article and Find Full Text PDF

Although herpes simplex virus, Epstein-Barr virus, and hemophagocytic lymphohistiocytosis are known causes of severe acute liver injury with or without liver failure, these diseases occur almost exclusively in immunocompromised and elderly patients. We report a case of an immunocompetent young man with no medical history who presented with a subacute cough and persistent fevers in the setting of a penile chancre. He was found to have severely elevated liver chemistries and was subsequently diagnosed with hemophagocytic lymphohistiocytosis because of disseminated herpes simplex virus type 1 and Epstein-Barr virus coinfection.

View Article and Find Full Text PDF

Purpose: Sepsis-associated liver injury (SALI) leads to increased mortality in sepsis patients, yet no specialized tools exist for early risk assessment. This study aimed to develop and validate a risk prediction model for early identification of SALI before patients meet full diagnostic criteria.

Patients And Methods: This retrospective study analyzed 415 sepsis patients admitted to ICU from January 2019 to January 2022.

View Article and Find Full Text PDF

This study introduced a hydrogel dressing, termed SODex-gel, which was constructed by establishing Schiff base and hydrogen bonds with the precursors of oxidized dextran (ODex) and succinic dihydrazide (SD)-modified sodium alginate (SD--SA). Through comprehensive and studies, the adhesive properties, self-healing capabilities, hemostatic potential, and wound healing efficacy of the SODex-gel dressing were meticulously evaluated. The H NMR, FTIR, and TGA analyses confirmed the fabrication of the SODex-gel dressing and its constituent elements.

View Article and Find Full Text PDF

Background: Therapeutic options for managing intestinal and hepatic inflammation associated with alcohol consumption, a prevalent health problem worldwide, remain unavailable. This study examines the potential efficacy of polyethylene glycol (PEG) in mitigating the intestinal and hepatic damage, employing a mouse model for assessment.

Methods: First, the mixture of ethanol (4 g/kg body weight) and PEG (2 g/kg body weight) or an equivalent volume of vehicle was administered orally alcohol consumption.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!