Previous study has indicated that Celastrol (Cel) has various physiological and pharmacological effects, including antibacterial, antioxidant, pro-apoptotic, anticancer and anti-rheumatoid arthritis (RA) effects. However, low water solubility, low oral bioavailability, narrow treatment window, and high incidence of systemic adverse reactions still limit the further clinical application of Cel. Here, aiming at effectively overcome those shortcomings of Cel to boost its beneficial effects for treating RA, we developed the leukosome (LEUKO) coated biomimetic nanoparticles (NPs) for the targeted delivery of Cel to arthritis injury area in RA. LEUKO were synthesized using membrane proteins purified from activated J774 macrophage. LEUKO and Cel-loaded LEUKO (Cel@LEUKO) were characterized using dynamic light scattering and transmission electron microscopy. Our results demonstrated that Cel@LEUKO can inhibit the inflammatory response of lipopolysaccharide (LPS) induced mouse monocyte macrophage leukemia cells (RAW264.7 cells) and human rheumatoid arthritis synovial fibroblasts (MH7A) cells through the inhibition of reactive oxygen species (ROS)-NF-κB pathway. In addition, research has shown that LEUKO effectively targets and transports Cel to the inflammatory site of RA, increased drug concentration in affected areas, reduced systemic toxicity of Cel, and reduced clinical symptoms, inflammatory infiltration, bone erosion, and serum inflammatory factors in collagen-induced arthritis (CIA) rats.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.intimp.2024.111822DOI Listing

Publication Analysis

Top Keywords

biomimetic nanoparticles
8
rheumatoid arthritis
8
cel
6
arthritis
5
leuko
5
nanoparticles effective
4
effective celastrol
4
celastrol delivery
4
delivery targeted
4
targeted treatment
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!