Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Introduction: Hyperglycemia may be a stumbling block for delivery of regenerative benefits of mesenchymal stem cells (MSCs) to diabetic patients with cardiovascular diseases. Our study aims to assess the viability and cardiac differentiation potential of MSCs after being exposed to diabetic glucose concentration.
Methods: MSCs were extracted from rat bone marrow. Cells were characterized based on morphology, differentiation potential, and expression of mesenchymal specific markers. MTT assay was done to evaluate the viability of MSCs after treatment with different glucose concentrations. Case group was MSCs treated with diabetic concentration of glucose versus cells treated with PBS as the control group. Growth curve and population doubling time were calculated in both groups. Expression of GATA4 and troponin, as the early and late markers during cardiac differentiation, were measured following 5-azacytidine exposure.
Results: Proliferated cells at passage three had fibroblastic-shape, was able to differentiate into adipocytes or osteocytes, and expressed CD73 and CD90. MSCs viability was gradually decreased by increasing glucose concentration. Irrespective of nicotine concentration, three-day exposure imposed more severe detrimental effects on viability compared with one-day treatment. Proliferation rate of the MSCs was lower in the case group, and they need more time for population doubling. Expression of both cardiac markers were downregulated in the case group at day three. However, their expression became higher at day seven.
Conclusion: Diabetic glucose concentration inhibits normal proliferation and cardiac differentiation of MSCs. This effect should be considered in stem cell therapy of cardiovascular patients who are concurrently affected by hyperglycemia, a common comorbidity in such individuals. Why carry out this study? What was learned from the study?
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.tice.2024.102361 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!