Floral traits and their connection with Pollinators and Climate.

Ann Bot

Department of Entomology, Plant Sciences Building 4112, 4291 Fieldhouse Dr., University of Maryland, College Park, MD 20742, USA.

Published: March 2024

AI Article Synopsis

Article Abstract

Background And Aims: Floral characteristics vary significantly among plant species, and multiple underlying factors govern this diversity. Although it is widely known that spatial variation in pollinator groups can exert selection on floral traits, the relative contribution of pollinators and climate to the variation of floral traits across large geographic areas remains a little-studied area. Besides furthering our conceptual understanding of these processes, gaining insight into the topic is also of conservation relevance: understanding how climate may drive floral traits variation can serve to protect plant-pollinator interactions under global change conditions.

Methods: We used Rhododendron as a model system and collected floral traits (corolla length, nectar volume and concentrations), floral visitors, and climatic data on 21 Rhododendron species across two continents (North America-Appalachians and Asia-Himalaya). Based on this we quantified the influence of climate and pollinators to floral traits using phylogeny-informed analyses.

Key Results: Our results indicate that there is substantial variation in pollinators and morphological traits across Rhododendron species and continents. We came across four pollinator groups: birds, bees, butterflies, and flies. Asian species were commonly visited by birds, bees, and flies, while bees and butterflies were the most common visitors of North American species. The visitor identity explained nectar trait variation, with flowers visited by birds presenting higher volumes of dilute nectar and those visited by insects producing concentrated nectar. Nectar concentration and corolla length exhibited a strong phylogenetic signal across the analysed set of species. We also found that nectar trait variation in the Himalaya could also be explained by climate, which presented significant interactions with pollinator identity.

Conclusions: Our results indicate that both pollinators and climate contribute and interact to drive nectar trait variation, suggesting that both can affect pollination interactions and floral (and plant) evolution individually and interacting with each other.

Download full-text PDF

Source
http://dx.doi.org/10.1093/aob/mcae046DOI Listing

Publication Analysis

Top Keywords

floral traits
24
pollinators climate
12
nectar trait
12
trait variation
12
floral
9
pollinator groups
8
corolla length
8
rhododendron species
8
species continents
8
birds bees
8

Similar Publications

Flower size evolution in the Southwest Pacific.

Ann Bot

January 2025

Division of BioInvasions, Global Change & Macroecology, University of Vienna, Austria.

Background And Aims: Despite accelerating interest in island evolution, the general evolutionary trajectories of island flowers remain poorly understood. In particular the island rule, which posits that small organisms become larger and large organisms to become smaller after island colonization, while tested in various plant traits, has never been tested in flower size. Here, we provide the first test for the island rule in flower size for animal- and wind-pollinated flowers, and the first evidence for generalized in-situ evolution of flower size on islands.

View Article and Find Full Text PDF

Seed production on native seed farms has increased to meet the rising demand for plant material for restoration. Although these propagation efforts are necessary for restoration, cultivating wild populations may also result in unintentional selection and elicit evolutionary changes that mimic crop domestication, essentially turning these efforts into artificial domestication experiments. Here, we investigated whether phenotypic and genomic changes associated with domestication occurred in the wildflower Clarkia pulchella Pursh (Onagraceae) by comparing the wild source populations to the farmed population after eight generations of cultivation.

View Article and Find Full Text PDF

Pollinators are thought to play a key role in driving incipient speciation within the angiosperms. However, the mechanisms underlying floral divergence in plants with generalist pollination systems, remains understudied. Brunsvigia gregaria displays significant geographical variation in floral traits and are visited by diverse pollinator communities.

View Article and Find Full Text PDF

Genetic Analyses of Flower, Fruit, and Stem Traits of Intergeneric Hybrids Between 'Honghuagqinglong' and 'Heilong' Pitayas.

Plants (Basel)

December 2024

Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.

Pitaya is renowned for its delicious taste, high nutritional value, and economic as well as ornamental appeal. Breeding new pitaya varieties can boost economic returns by appealing to consumers with diverse morphological traits. However, the genetic basis underlying key traits in intergeneric hybrids of pitaya has yet to be fully understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!