When faced with starvation, the bacterium transforms itself into a dormant cell type called a "spore". Sporulation initiates with an asymmetric division event, which requires the relocation of the core divisome components FtsA and FtsZ, after which the sigma factor σ is exclusively activated in the smaller daughter cell. Compartment-specific activation of σ requires the SpoIIE phosphatase, which displays a biased localization on one side of the asymmetric division septum and associates with the structural protein DivIVA, but the mechanism by which this preferential localization is achieved is unclear. Here, we isolated a variant of DivIVA that indiscriminately activates σ in both daughter cells due to promiscuous localization of SpoIIE, which was corrected by overproduction of FtsA and FtsZ. We propose that the core components of the redeployed cell division machinery drive the asymmetric localization of DivIVA and SpoIIE to trigger the initiation of the sporulation program.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10990147PMC
http://dx.doi.org/10.1073/pnas.2400584121DOI Listing

Publication Analysis

Top Keywords

cell division
8
division machinery
8
asymmetric division
8
ftsa ftsz
8
cell
4
machinery drives
4
drives cell-specific
4
cell-specific gene
4
gene activation
4
activation differentiation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!