Global understanding of plastid gene expression has always been impaired by its complexity. RNA splicing, editing, and intercistronic processing create multiple transcripts isoforms that can hardly be resolved using traditional molecular biology techniques. During the last decade, the wide adoption of RNA-seq-based techniques has, however, allowed an unprecedented understanding of all the different steps of chloroplast gene expression, from transcription to translation. Current strategies are nonetheless unable to identify and quantify full length transcripts isoforms, a limitation that can now be overcome using Nanopore Sequencing. We here provide a complete protocol to produce, from total leaf RNA, cDNA libraries ready for Nanopore sequencing. While most Nanopore protocols take advantage of the mRNA polyA tail we here first ligate an RNA adapter to the 3' ends of the RNAs and use it to initiate the template switching reverse transcription. The cDNA is then prepared and indexed for use with the regular Oxford Nanopore v14 chemistry. This protocol is of particular interest to researchers willing to simultaneously study the multiple post-transcriptional processes prevalent in the chloroplast.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-0716-3726-5_15DOI Listing

Publication Analysis

Top Keywords

nanopore sequencing
12
gene expression
8
transcripts isoforms
8
nanopore
5
sequencing analyze
4
analyze chloroplast
4
chloroplast transcriptome
4
transcriptome library
4
library preparation
4
preparation global
4

Similar Publications

, commonly known as the "Chinese hibiscus", is a widely cultivated shrub with ornamental and medicinal applications (Jadhav et al., 2009). However, it is known to be susceptible to a range of pathogens including bacteria (Chase, 1986).

View Article and Find Full Text PDF

Background: A subset of developmental disorders (DD) is characterized by disease-specific genome-wide methylation changes. These episignatures inform on the underlying pathogenic mechanisms and can be used to assess the pathogenicity of genomic variants as well as confirm clinical diagnoses. Currently, the detection of these episignature requires the use of indirect methylation profiling methodologies.

View Article and Find Full Text PDF

Background: Chromosomal inversions are underappreciated causes of rare diseases given their detection, resolution, and clinical interpretation remain challenging. Heterozygous mutations in the MEIS2 gene cause an autosomal dominant syndrome characterized by intellectual disability, cleft palate, congenital heart defect, and facial dysmorphism at variable severity and penetrance.

Case Presentation: Herein, we report a Chinese girl with intellectual disability, developmental delay, and congenital heart defect, in whom G-banded karyotype analysis identified a de novo paracentric inversion 46,XX, inv(15)(q15q26.

View Article and Find Full Text PDF

Background: Molecular diagnosis has become highly significant for patient management in oncology.

Methods: Here, 30 well-characterized clinical germline samples were studied with adaptive sampling to enrich the full sequence of 152 cancer predisposition genes. Sequencing was performed on Oxford Nanopore (ONT) R10.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!