Role of methylglyoxal and glyoxalase in the regulation of plant response to heavy metal stress.

Plant Cell Rep

College of Architecture Landscape, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China.

Published: March 2024

Methylglyoxal and glyoxalase function a significant role in plant response to heavy metal stress. We update and discuss the most recent developments of methylglyoxal and glyoxalase in regulating plant response to heavy metal stress. Methylglyoxal (MG), a by-product of several metabolic processes, is created by both enzymatic and non-enzymatic mechanisms. It plays an important role in plant growth and development, signal transduction, and response to heavy metal stress (HMS). Changes in MG content and glyoxalase (GLY) activity under HMS imply that they may be potential biomarkers of plant stress resistance. In this review, we summarize recent advances in research on the mechanisms of MG and GLY in the regulation of plant responses to HMS. It has been discovered that appropriate concentrations of MG assist plants in maintaining a balance between growth and development and survival defense, therefore shielding them from heavy metal harm. MG and GLY regulate plant physiological processes by remodeling cellular redox homeostasis, regulating stomatal movement, and crosstalking with other signaling molecules (including abscisic acid, gibberellic acid, jasmonic acid, cytokinin, salicylic acid, melatonin, ethylene, hydrogen sulfide, and nitric oxide). We also discuss the involvement of MG and GLY in the regulation of plant responses to HMS at the transcriptional, translational, and metabolic levels. Lastly, considering the current state of research, we present a perspective on the future direction of MG research to elucidate the MG anti-stress mechanism and offer a theoretical foundation and useful advice for the remediation of heavy metal-contaminated environments in the future.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00299-024-03186-yDOI Listing

Publication Analysis

Top Keywords

heavy metal
20
response heavy
16
metal stress
16
methylglyoxal glyoxalase
12
regulation plant
12
plant response
12
plant
8
stress methylglyoxal
8
role plant
8
growth development
8

Similar Publications

Methylene blue is a cationic organic dye commonly found in wastewater, groundwater, and surface water due to industrial discharge into the environment. This emerging pollutant is notably persistent and can pose risks to both human health and the environment. In this study, we developed a Surface Plasmon Resonance Biosensor employing a BK7 prism coated with 3 nm chromium and 50 nm of gold in the Kretschmann configuration, specifically for the detection of methylene blue.

View Article and Find Full Text PDF

Ovarian cancer (OC) must be detected in its early stages when the mortality rate is the lowest to provide patients with the best chance of survival. Lysophosphatidic acid (LPA) is a critical OC biomarker since its levels are elevated across all stages and increase with disease progression. This paper presents an LPA assay based on a thickness shear mode acoustic sensor with dissipation monitoring that involves a new thiol molecule 3-(2-mercaptoethanoxy)propanoic acid (HS-MEG-COOH).

View Article and Find Full Text PDF

A Signal-On Microelectrode Electrochemical Aptamer Sensor Based on AuNPs-MXene for Alpha-Fetoprotein Determination.

Sensors (Basel)

December 2024

Innovation Platform of Micro/Nano Technology for Biosensing, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, China.

As a crucial biomarker for the early warning and prognosis of liver cancer diseases, elevated levels of alpha-fetoprotein (AFP) are associated with hepatocellular carcinoma and germ cell tumors. Herein, we present a novel signal-on electrochemical aptamer sensor, utilizing AuNPs-MXene composite materials, for sensitive AFP quantitation. The AuNPs-MXene composite was synthesized through a simple one-step method and modified on portable microelectrodes.

View Article and Find Full Text PDF

Activated Nanocellulose from Corn Husk: Application to As and Pb Adsorption Kinetics in Batch Wastewater.

Polymers (Basel)

December 2024

Research Group for the Development of Advanced Materials for Water and Food Treatment, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru.

The aim of this study was to evaluate the removal of Pb and As from an aqueous solution using corn residue cellulose nanocrystals (NCCs). The corn husk was subjected to alkaline digestion, followed by bleaching and esterification with 3% citric acid to obtain NCCs. A 10 ppm multimetal solution of Pb and As was prepared.

View Article and Find Full Text PDF

Novel Nanocomposites and Biopolymer-Based Nanocomposites for Hexavalent Chromium Removal from Aqueous Media.

Polymers (Basel)

December 2024

Department of Applied Chemistry and Engineering of Inorganic Compounds and the Environment, University Politehnica Timisoara, 2 Piata Victoriei, 300006 Timișoara, Romania.

Designing new engineered materials derived from waste is essential for effective environmental remediation and reducing anthropogenic pollution in our economy. This study introduces an innovative method for remediating metal-contaminated water, using two distinct waste types: one biowaste (eggshell) and one industrial waste (fly ash). We synthesized three novel, cost-effective nanoadsorbent types, including two new tertiary composites and two biopolymer-based composites (specifically k-carrageenan and chitosan), which targeted chromium removal from aqueous solutions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!