Insight into the role of copper-based materials against the coronaviruses MHV-3, a model for SARS-CoV-2, during the COVID-19 pandemic.

Biometals

Laboratory of Virology and Applied Biotechnology, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, 13083-862, Brazil.

Published: August 2024

Coating high-touch surfaces with inorganic agents, such as metals, appears to be a promising long-term disinfection strategy. However, there is a lack of studies exploring the effectiveness of copper-based products against viruses. In this study, we evaluated the cytotoxicity and virucidal effectiveness of products and materials containing copper against mouse hepatitis virus (MHV-3), a surrogate model for SARS-CoV-2. The results demonstrate that pure CuO and Cu possess activity against the enveloped virus at very low concentrations, ranging from 0.001 to 0.1% (w/v). A greater virucidal efficacy of CuO was found for nanoparticles, which showed activity even against viruses that are more resistant to disinfection such as feline calicivirus (FCV). Most of the evaluated products, with concentrations of Cu or CuO between 0.003 and 15% (w/v), were effective against MHV-3. Cryomicroscopy images of an MHV-3 sample exposed to a CuO-containing surface showed extensive damage to the viral capsid, presumably due to the direct or indirect action of copper ions.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10534-024-00585-2DOI Listing

Publication Analysis

Top Keywords

model sars-cov-2
8
insight role
4
role copper-based
4
copper-based materials
4
materials coronaviruses
4
mhv-3
4
coronaviruses mhv-3
4
mhv-3 model
4
sars-cov-2 covid-19
4
covid-19 pandemic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!