Recent advances in available percutaneous device technology require accurate measurements and quantification of relationships between right ventricular outflow tract (RVOT) structures in children with and without congenital heart disease to determine device suitability. To date, no population study has described normal reference ranges of these measurements by computed tomography (CT). We aimed to establish normative values for four CT-derived measurements between RVOT structures from a heterogeneous population without heart disease and develop z scores useful for clinical practice. Patients without heart disease who underwent cardiac CT between April 2014 and February 2021 at Children's Hospital Colorado were included. Distance between the right ventricular (RV) apex to pulmonary valve (PV), PV to pulmonary trunk bifurcation, and bifurcation to the right and left pulmonary artery was measured. Previously validated models were used to normalize the measurements and calculate Z scores. Each measurement was plotted against BSA and Z scores distributions were used as reference lines. Three-hundred and sixty-four healthy patients with a mean age of 8.8 years (range 1-21), 58% male, and BSA of 1 m (range 0.4-2.1) were analyzed. The Haycock formula was used to present data as predicted values for a given BSA and within equations relating each measurement to BSA. Predicted values and Z-score boundaries for all measurements are presented.We report CT-derived normative data for four measurements between RVOT structures from a heterogeneous cohort of healthy children. Knowledge of this normative data will be useful in both determining device fit and customizing future devices to accommodate the diverse pediatric size range.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00246-024-03456-2DOI Listing

Publication Analysis

Top Keywords

rvot structures
12
heart disease
12
normative values
8
ventricular outflow
8
outflow tract
8
measurements rvot
8
structures heterogeneous
8
predicted values
8
normative data
8
measurements
6

Similar Publications

Structural abnormalities within the right ventricular outflow tract (RVOT) can present similarly to Brugada syndrome. A 34-year-old woman with no medical history presented with polymorphic ventricular tachycardia/ventricular fibrillation cardiac arrest and initial electrocardiogram showed type I Brugada pattern. Cardiac magnetic resonance imaging revealed prominent tissue thickening at the RVOT with late gadolinium enhancement.

View Article and Find Full Text PDF
Article Synopsis
  • The Myval is a transcatheter heart valve developed by Meril Life Sciences that features an operator-friendly design for easier delivery and precise deployment.
  • It has shown effectiveness and safety in clinical studies, making it suitable for various complex heart valve procedures, including aortic valve implantation and pulmonary valve replacement.
  • The advancement of Myval signifies a step forward in cardiology, with a need for further long-term studies to confirm its benefits in improving patient outcomes and quality of life.*
View Article and Find Full Text PDF

Adaptation of Aortic Bioprosthetic Valves for Pulmonary Position: Comparative Analysis of Transcatheter and Surgical Valves.

J Cardiovasc Transl Res

December 2024

Department of Mechanical and Materials Engineering, University of Denver, 2155 E. Wesley Ave, Room 439, Denver, CO, 80208, USA.

Article Synopsis
  • Pulmonary valve dysfunction is frequent in congenital heart disease, often requiring procedures like right ventricular outflow tract reconstruction, with transcatheter pulmonary valve replacement (TPVR) now being a successful alternative to traditional surgery.
  • This study compares two bioprosthetic valves: the Carpentier Edwards Perimount Magna Ease surgical valve and the Edwards SAPIEN 3 transcatheter valve, noting that the latter was originally designed for aortic use but has been adapted for pulmonary applications.
  • Significant differences were observed in the hydrodynamic and structural characteristics of the valves under pulmonary and aortic conditions, enhancing the understanding of the biomechanics involved in both surgical and transcatheter replacements.
View Article and Find Full Text PDF
Article Synopsis
  • Premature ventricular complexes (PVCs) disrupt the heart's normal rhythm by causing the ventricles to contract early, and identifying their origin is important for improving surgical outcomes and ablation success.* -
  • PVCsNet is a deep-learning network created to classify PVCs in ECG images, using advanced techniques like residual structures and attention mechanisms to improve accuracy, even with limited data.* -
  • The study shows PVCsNet achieves 94.49% accuracy in classifying PVC origins into six categories, with the right ventricular outflow tract (RVOT) being the most common, highlighting its potential for enhancing clinical diagnostics.*
View Article and Find Full Text PDF

Pulmonary valves do not display a fibrous annulus as do other valves in the heart; thus, pulmonary valves can be implanted at multiple orientations and locations within the right ventricular outflow tract (RVOT). This gives surgeons more freedom when implanting the valve but it also results in uncertainties regarding placement, particularly with respect to valve orientation. We investigate the pulmonary artery hemodynamics and valve leaflet dynamics of pulmonary valve replacements (PVRs) with various orientations via fluid-structure interaction (FSI) models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!