Inorganic-organic lead halide perovskites, particularly methylammonium lead halide (MAPbI) perovskite, have been regarded as promising materials for optoelectronics and spintronics. However, the practical applications of these perovskites are limited by lead toxicity and instability under air and pressure. This study investigates the substitution of Pb with Sn and Ge in cubic MAPbI perovskite. The properties of the resulting hybrid perovskites are compared using state-of-the-art first-principles-based methodologies, , density functional theory (DFT) with generalized gradient approximation (PBE) and hybrid functional (HSE06), in conjunction with spin-orbit coupling (SOC). Here, we mainly study the Rashba-Dresselhaus (RD) effect, which arises due to two major mechanisms: (i) the breaking of inversion symmetry (static and dynamic) and (ii) SOC, originating from the presence of heavy elements. We find significant spin-splitting effects in the conduction band minimum and valence band maximum for hybrid perovskites. To gain a deeper understanding of the observed spin-splitting, the spin textures are analyzed, and Rashba coefficients are calculated. We find that the Dresselhaus effect comes into play in substituted hybrid structures in addition to the usual Rashba effect observed in the pristine compound. Additionally, we observe that the strength of Rashba spin-splitting is substantially tuned by the application of uniaxial strain (±5%). Moreover, certain hybrid perovskites exhibit mechanical stability and ductility, making them potential candidates in perovskite-based optoelectronics and spintronics applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3cp04334g | DOI Listing |
ACS Appl Mater Interfaces
January 2025
CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India.
The tunability of the energy bandgap in the near-infrared (NIR) range uniquely positions colloidal lead sulfide (PbS) quantum dots (QDs) as a versatile material to enhance the performance of existing perovskite and silicon solar cells in tandem architectures. The desired narrow bandgap (NBG) PbS QDs exhibit polar (111) and nonpolar (100) terminal facets, making effective surface passivation through ligand engineering highly challenging. Despite recent breakthroughs in surface ligand engineering, NBG PbS QDs suffer from uncontrolled agglomeration in solid films, leading to increased energy disorder and trap formation.
View Article and Find Full Text PDFChem Sci
October 2024
Key Laboratory of Optoelectronic Technology and Systems (Ministry of Education), Chongqing University Chongqing 400044 China
Metal halide perovskites (MHPs) have been developed rapidly for application in light-emitting diodes (LEDs), lasers, solar cells, photodetectors and other fields in recent years due to their excellent photoelectronic properties, and they have attracted the attention of many researchers. Perovskite LEDs (PeLEDs) show great promise for next-generation lighting and display technologies, and the external quantum efficiency (EQE) values of polycrystalline thin-film PeLEDs exceed 20%, which is undoubtedly a big breakthrough in lighting and display fields. However, the toxicity and instabilities of lead-based MHPs remain major obstacles limiting their further commercial applications.
View Article and Find Full Text PDFMater Horiz
January 2025
Center for Future Optoelectronic Functional Materials, School of Computer and Electronic Information/School of Artificial Intelligence, Nanjing Normal University, Nanjing 210023, P. R. China.
Given that optical thermometers are widely used due to their unique advantages, this study aims to address critical challenges in existing technologies, such as insufficient sensitivity, limited temperature measurement ranges, and poor signal recognition capabilities. Herein, we develop a thermometer based on the fluorescence intensity ratio (FIR) of Sb-doped CsNaInCl (CsNaInCl:Sb). As the temperature increases from 203 to 323 K, the thermally induced transition from triplet to singlet self-trapped excitons (STEs) leads to enhanced 455 nm photoluminescence (PL) from singlet STE recombination.
View Article and Find Full Text PDFChemSusChem
January 2025
Xian Jiaotong University, School of Chemical Engineering and Technology, Xianning west road 8th, School of Chemical Engineering and Technology, 710049, Xi'an, CHINA.
In light of the increasingly pressing energy and environmental challenges, the use of photocatalysis to convert solar energy into chemical energy has emerged as a promising solution. Halide perovskites have recently attracted considerable interest as photocatalysts due to their outstanding properties. Early developments focused on Lead-based perovskites, but their use has been severely restricted due to the toxicity of Lead.
View Article and Find Full Text PDFSmall
January 2025
Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal, 462 066, India.
The structural and electronic changes are investigated in a 3D hybrid perovskite, methylhydrazinium lead chloride (MHyPbCl) from a host/guest perspective as it transitions from a highly polar to less polar phase upon cooling, using first-principles calculations. The two phases vary structurally in the guest (MHy) orientation and the two differently distorted host (lead halide) layers. These findings highlight the critical role of guest reorientation in reducing host distortion at high temperatures, making the former the primary order parameter for the transition, a notable contrast to the case of other hybrid perovskites.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!