Cystic fibrosis (CF) is an inherited disorder caused by a deleterious mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Given that the CFTR protein is a chloride channel expressed on a variety of cells throughout the human body, mutations in this gene impact several organs, particularly the lungs. For this very reason, research regarding CF disease and CFTR function has historically focused on the lung airway epithelium. Nevertheless, it was discovered more than two decades ago that CFTR is also expressed and functional on endothelial cells. Despite the great strides that have been made in understanding the role of CFTR in the airway epithelium, the role of CFTR in the endothelium remains unclear. Considering that the airway epithelium and endothelium work in tandem to allow gas exchange, it becomes very crucial to understand how a defective CFTR protein can impact the pulmonary vasculature and overall lung function. Fortunately, more recent research has been dedicated to elucidating the role of CFTR in the endothelium. As a result, several vascular dysfunctions associated with CF disease have come to light. Here, we summarize the current knowledge on pulmonary vascular dysfunctions in CF and discuss applicable therapies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11368519 | PMC |
http://dx.doi.org/10.1152/physiol.00024.2023 | DOI Listing |
Mol Neurodegener
January 2025
Department of Radiology and Imaging Sciences, Center for Neuroimaging, Indiana University School of Medicine, Indianapolis, IN, USA.
Alzheimer's disease (AD) is a debilitating neurodegenerative disease that is marked by profound neurovascular dysfunction and significant cell-specific alterations in the brain vasculature. Recent advances in high throughput single-cell transcriptomics technology have enabled the study of the human brain vasculature at an unprecedented depth. Additionally, the understudied niche of cerebrovascular cells, such as endothelial and mural cells, and their subtypes have been scrutinized for understanding cellular and transcriptional heterogeneity in AD.
View Article and Find Full Text PDFDiabetologia
January 2025
Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
Aims/hypothesis: Within the small intestine, neutrophils play an integral role in preventing bacterial infection. Upon interaction with bacteria or bacteria-derived antigens, neutrophils initiate a multi-staged response of which the terminal stage is NETosis, formation of protease-decorated nuclear DNA into extracellular traps. NETosis has a great propensity to elicit ocular damage and has been associated with diabetic retinopathy and diabetic macular oedema (DME) progression.
View Article and Find Full Text PDFSci Rep
January 2025
School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK.
Renal ischaemia due to renal artery stenosis produces two differing responses - a juxtaglomerular hypertensive response and cortical renal dysfunction. The reversibility of renal impairment is not predictable, and thus renal revascularisation is controversial. This study aims to test the hypothesis that the hypertensive response to renal ischaemia reflects viable renal parenchyma, and thus could be used to predict the recovery in renal function.
View Article and Find Full Text PDFNeurol Res
January 2025
Neurology Department, Faculty of Medicine, Cairo University, Giza, Cairo, Egypt.
Background: Endothelial dysfunction and inflammation are linked to migraine, which may contribute to atherogenesis and increase the risk of ischemia. In migraineurs, preclinical vascular involvement manifested as compromised structural characteristics of vessel wall has not received enough attention or evaluation.
Objectives: To measure plasma pentraxin 3 as an indicator of endothelial dysfunction in migraine in comparison to controls and to examine its correlation with clinical characteristics, headache severity, and brain magnetic resonance imaging findings.
Comput Biol Med
January 2025
Department of Mechanical Engineering, Isfahan University of Technology, Isfahan, Iran. Electronic address:
Atherogenesis is prone in medium and large-sized vessels, such as the aorta and coronary arteries, where hemodynamic stress is critical. Low and oscillatory wall shear stress contributes significantly to endothelial dysfunction and inflammation. Murray's law minimizes energy expenditure in vascular networks and applies to small arteries.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!