Here, resistive switching (RS) devices are fabricated using naturally abundant, nontoxic, biocompatible, and biodegradable biomaterials. For this purpose, 1D chitosan nanofibers (NFs), collagen NFs, and chitosan-collagen NFs are synthesized by using an electrospinning technique. Among different NFs, the collagen-NFs-based device shows promising RS characteristics. In particular, the optimized Ag/collagen NFs/fluorine-doped tin oxide RS device shows a voltage-tunable analog memory behavior and good nonvolatile memory properties. Moreover, it can also mimic various biological synaptic learning properties and can be used for pattern classification applications with the help of the spiking neural network. The time series analysis technique is employed to model and predict the switching variations of the RS device. Moreover, the collagen NFs have shown good cytotoxicity and anticancer properties, suggesting excellent biocompatibility as a switching layer. The biocompatibility of collagen NFs is explored with the help of NRK-52E (Normal Rat Kidney cell line) and MCF-7 (Michigan Cancer Foundation-7 cancer cell line). Additionally, the biodegradability of the device is evaluated through a physical transient test. This work provides a vital step toward developing a biocompatible and biodegradable switching material for sustainable nonvolatile memory and neuromorphic computing applications.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202312484DOI Listing

Publication Analysis

Top Keywords

biocompatible biodegradable
12
nonvolatile memory
12
collagen nfs
12
sustainable nonvolatile
8
synaptic learning
8
nfs
6
cognifiber harnessing
4
harnessing biocompatible
4
collagen
4
biodegradable collagen
4

Similar Publications

Towards Accurate Biocompatibility: Rethinking Cytotoxicity Evaluation for Biodegradable Magnesium Alloys in Biomedical Applications.

J Funct Biomater

December 2024

CS-Surgical Sciences and Technologies-SS Omics Science Platform for Personalized Orthopedics, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy.

Magnesium and its alloys represent promising candidates for biomedical implants due to their biodegradability and mechanical properties, which are similar to natural bone. However, their rapid degradation process characterized by dynamic pH fluctuations and significant hydrogen gas evolution during biocorrosion adversely affects both in vitro and in vivo assessments. While the ISO 10993-5 and 12 standards provide guidelines for evaluating the in vitro biocompatibility of biodegradable materials, they also introduce testing variability conditions that yield inconsistent results.

View Article and Find Full Text PDF

Magnesium alloys are promising biodegradable implant materials due to their excellent biocompatibility and non-toxicity. However, their poor corrosion resistance limits their application in vivo. Plasma electrolytic oxidation (PEO) is a powerful technique to improve the corrosion resistance of magnesium alloys.

View Article and Find Full Text PDF

Natural Epithelial Barrier Integrity Enhancers- and Extracts.

Gels

December 2024

The Department of Chemical Engineering and Biotechnology, Ariel University, Ariel 4070000, Israel.

Buccal drug delivery offers a promising alternative for avoiding gastrointestinal degradation and first-pass metabolism. However, enhancing the buccal epithelial barrier's permeability remains challenging. This study explores the effects of ethanolic extracts from (CM), (CMC), and (ORD) on buccal epithelium permeability in vitro using a TR146 cell-based model.

View Article and Find Full Text PDF

Multidrug resistance (MDR) due to the overexpression of the P-glycoprotein (P-gp) efflux pump remains a significant challenge in cancer therapy, also in breast cancer. Traditional pharmacological approaches have focused on using inhibitors to modulate P-gp expression and function. Curcumin, a polyphenol derived from Curcuma longa L.

View Article and Find Full Text PDF

Chemotherapy is still one of the major approaches in triple-negative breast cancer (TNBC) treatment. The development of new formulations for classic chemotherapeutic drugs remains interests in studies. Camptothecin (CPT) is powerful antitumor agents in TNBC treatment though its clinic applications are limited by its low water solubility and systemic toxicity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!