Design of a gold nanoparticles site in an engineered lipase: an artificial metalloenzyme with enantioselective reductase-like activity.

Nanoscale

Instituto de Catálisis y Petroleoquímica (ICP), CSIC, c/Marie Curie 2, Campus UAM Cantoblanco, 28049 Madrid, Spain.

Published: April 2024

The conjugation of gold complexes with proteins has proved to be interesting and effective in obtaining artificial metalloenzymes as catalysts with improved properties such as higher stability, activity and selectivity. However, the design and precise regulation of their structure as protein nanostructured forms level remains a challenge. Here, we have designed and constructed a gold nanoparticles-enzyme bioconjugate, by tailoring the formation of gold nanoparticles (AuNPs) at two specific sites on the structure of an alkalophilic lipase from (GTL). For this purpose, two genetically modified variants of GTL were created by inserting a unique cysteine residue into the catalytic active site by replacing the active serine (GTL-114) and into the lid site (GTL-193). The enzyme, after a first protein-gold coordination, induced the formation of AuNPs, generating a homogeneous artificial enzyme. The size and morphology of the nanoparticles in the AuNPs-enzyme conjugate have been controlled by specific pH conditions in synthesis and the specific protein region where they are formed. Reductase activity of all of them was confirmed in the hydrogenation of nitroarenes in aqueous media. The protein area seemed to be key for the AuNPs, with the best TOF values obtained for the bioconjugates with AuNPs in the lid site. Finally, the protein environment and the asymmetric properties of the AuNPs were tested in the reduction of acetophenone to 1-phenylethanol in aqueous medium at room temperature. A high reductive conversion and an enantiomeric excess of up to 39% towards ()-1-phenylethanol was found using Au-Mt@GTL-114 pH 10 as a catalyst. Moderate enantioselectivity towards the opposite isomer was also observed using the Au-Mt@GTL-193 pH 10 conjugate.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4nr00573bDOI Listing

Publication Analysis

Top Keywords

gold nanoparticles
8
lid site
8
aunps
5
design gold
4
site
4
nanoparticles site
4
site engineered
4
engineered lipase
4
lipase artificial
4
artificial metalloenzyme
4

Similar Publications

Emerging Combinatorial Drug Delivery Strategies for Breast Cancer: A Comprehensive Review.

Curr Drug Targets

January 2025

Pharmaceutics Research Projects Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar (M.P.) 470003, India.

Breast cancer remains the second most prevalent cancer among women in the United States. Despite advancements in surgical, radiological, and chemotherapeutic techniques, multidrug resistance continues to pose significant challenges in effective treatment. Combination chemotherapy has emerged as a promising approach to address these limitations, allowing multiple drugs to target malignancies via distinct mechanisms of action.

View Article and Find Full Text PDF

A Smart mRNA-Initiated Theranostic Multi-shRNA Nanofactory for Precise and Efficient Cancer Gene Therapy.

Adv Healthc Mater

January 2025

State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China.

Despite the significant potential of short hairpin RNA (shRNA)-mediated gene therapy for various diseases, the clinical success of cancer treatment remains poor, partly because of low selectivity and low efficiency. In this study, an mRNA-initiated autonomous multi-shRNA nanofactory (RNF@CM) is designed for in vivo amplification imaging and precise cancer treatment. The RNF@CM consists of a gold nanoparticle core, an interlayer of two types of three-stranded DNA/RNA hybrid probes, one of which is bound to aptamer-inhibited DNA polymerases, and an outer layer of the cancer cell membrane.

View Article and Find Full Text PDF

Globally, breast cancer continues to be the leading type of cancer affecting women, with rising mortality rates projected by 2030. This highlights the importance of developing new, affordable treatments, like drug delivery systems that use nanoparticles. Gold nanoparticles (AuNPs), including their exceptional optical and physical attributes, make them an attractive vehicle for targeted treatment, allowing for accurate and focused delivery of medication directly to cancerous cells while reducing harmful side effect.

View Article and Find Full Text PDF

Quantitative determination of leptin hormone using gold nanoparticle-based lateral flow assay.

Mikrochim Acta

January 2025

Science and Technology Research and Application Center (BITAM), Necmettin Erbakan University, Konya, Türkiye.

A lateral flow assay (LFA) has been developed that can be used in point-of-care (PoC) use for the sensitive determination of leptin hormone. The limit of detection value was 0.158 ng/mL and the limit of quantification value was 0.

View Article and Find Full Text PDF

A localized surface plasmon resonance (LSPR) sensor based on tapered optical fiber (TOF) using hollow gold nanoparticles (HAuNPs) for measuring the refractive index (RI) is presented. This optical fiber sensor is a good candidate for a label-free RI biosensor. In practical biosensors, bioreceptors are immobilized on nanoparticles (NPs) that only absorb specific biomolecules.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!