Revitalization of Diluent Amide-Based Electrolyte for Building High-Voltage Lithium-Metal Batteries.

Small

National & Local United Engineering Laboratory for Power Battery, Department of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China.

Published: August 2024

AI Article Synopsis

  • - The study focuses on improving lithium-metal batteries (LMBs) by using a highly concentrated electrolyte strategy to enhance amide usage, which helps control lithium reactivity and improves lithium deposition.
  • - To reduce costs in electrolyte preparation, researchers propose a new approach using dilute amide electrolytes (1 m Li-salt concentration) combined with perfluoropolyethers and specific additives to create a stable anion-rich lithium solvation structure.
  • - The resulting optimized electrolyte with N,N-Dimethyltrifluoroacetamide shows excellent compatibility and performance in both lab and practical applications, marking a significant advancement for stable lithium deposition and enhanced battery performance in LMBs.

Article Abstract

Hitherto, highly concentrated electrolyte is the overarching strategy for revitalizing the usage of amide - in lithium-metal batteries (LMBs), which simultaneously mitigates the reactivity of amide toward Li and regulates uniform Li deposition via forming anion-solvated coordinate structure. However, it is undeniable that this would bring the cost burden for practical electrolyte preparation, which stimulates further electrolyte design toward tailoring anion-abundant Li solvation structure in stable amide electrolytes under a low salt content. Herein, a distinct method is conceived to design anions-enriched Li solvation structure in dilute amide-electrolyte (1 m Li-salt concentration) with the aid of integrating perfluoropolyethers (PFPE-MC) with anion-solvating ability and B/F-involved additives. The optimized electrolyte based on N,N-Dimethyltrifluoroacetamide (FDMAC) exhibits outstanding compatibility with Li and NCM622 cathode, facilitates uniform Li deposition along with robust solid electrolyte interphase (SEI) formation. Accordingly, both the lab-level LMB coin cell and practical pouch cell based on this dilute FDMAC electrolyte deliver remarkable performances with improved capacity and cyclability. This work pioneers the feasibility of diluted amide as electrolyte in LMB, and provides an innovative strategy for highly stable Li deposition via manipulating solvation structure within diluent electrolyte, impelling the electrolyte engineering development for practical high-energy LMBs.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202308959DOI Listing

Publication Analysis

Top Keywords

solvation structure
12
electrolyte
10
lithium-metal batteries
8
uniform deposition
8
revitalization diluent
4
diluent amide-based
4
amide-based electrolyte
4
electrolyte building
4
building high-voltage
4
high-voltage lithium-metal
4

Similar Publications

Dual-Anion-Rich Polymer Electrolytes for High-Voltage Solid-State Lithium Metal Batteries.

ACS Nano

January 2025

Department of Physics, JC STEM Lab of Energy and Materials Physics, City University of Hong Kong, Hong Kong 999077, P. R. China.

Solid polymer electrolytes (SPEs) are promising candidates for lithium metal batteries (LMBs) owing to their safety features and compatibility with lithium metal anodes. However, the inferior ionic conductivity and electrochemical stability of SPEs hinder their application in high-voltage solid-state LMBs (HVSSLMBs). Here, a strategy is proposed to develop a dual-anion-rich solvation structure by implementing ferroelectric barium titanate (BTO) nanoparticles (NPs) and dual lithium salts into poly(vinylidene fluoride) (PVDF)-based SPEs for HVSSLMBs.

View Article and Find Full Text PDF

With the advancement of genetic code expansion, the field is progressing towards incorporating multiple non-canonical amino acids (ncAAs). The specificity of aminoacyl-tRNA synthetases (aaRSs) towards ncAAs is a critical factor, as engineered aaRSs frequently show polyspecificity, complicating the precise incorporation of multiple ncAAs. To address this challenge, predicting binding affinity can be beneficial.

View Article and Find Full Text PDF

Understanding the molecular mechanism of inhibitor binding to prostate-specific membrane antigen (PSMA) is of fundamental importance for designing targeted drugs for prostate cancer. Here we designed a series of PSMA-targeting inhibitors with distinct molecular structures, which were synthesized and characterized using both experimental and computational approaches. Microsecond molecular dynamics simulations revealed the structural and thermodynamic details of PSMA-inhibitor interactions.

View Article and Find Full Text PDF

Principles of ion binding to RNA inferred from the analysis of a 1.55 Å resolution bacterial ribosome structure - Part I: Mg2.

Nucleic Acids Res

December 2024

Université de Strasbourg, Architecture et Réactivité de l'ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, 2 Allée Konrad Roentgen, 67084 Strasbourg, France.

The importance of Mg2+ ions for RNA structure and function cannot be overstated. Several attempts were made to establish a comprehensive Mg2+ binding site classification. However, such descriptions were hampered by poorly modelled ion binding sites as observed in a recent cryo-EM 1.

View Article and Find Full Text PDF

The N/OFQ-NOP receptor is a fascinating peptidergic system with the potential to be exploited for the development of analgesic drugs devoid of side effects associated with classical opioid signalling modulation. To date, up to four X-ray and cryo-EM structures of the NOP receptor in complex with the endogenous peptide agonist N/OFQ and three small molecule antagonists have been solved and released. Despite the available structural information, the details of selective small molecule agonist binding to the NOP receptor in the active state remain elusive.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!