AI Article Synopsis

  • Perovskite solar cells (PSCs) are emerging as a promising photovoltaic technology due to their high efficiency, but Pb toxicity poses environmental concerns for large-scale use.
  • Researchers are exploring bismuth (Bi) as a safer alternative to lead in PSCs and have developed a new bismuth-based perovskite, CsBiSCl, for this purpose.
  • The CsBiSCl PSCs demonstrated a power conversion efficiency of 10.38% and maintained 97% of efficiency after 150 days, indicating strong potential for stability and commercial viability without lead.

Article Abstract

Perovskite solar cells (PSCs) have become a new photovoltaic technology with great commercial potential because of their excellent photovoltaic performance. However, the toxicity and poor environmental stability of Pb in Pb-based perovskites limit its large-scale application. Exploring alternatives to Pb is an available approach to develop environmentally friendly PSCs. As an adjacent element of Pb, Bi shows many similar physical and chemical properties; therefore, it is commonly applied for B site substitution in Pb-based PSCs. CsBiSCl, a new Pb-free perovskite system, was synthesized for the first time as a light absorber. By preparing DMABiS as an intermediate, Cs-Bi-based CsBiSCl perovskite films with a band gap over 2.012 eV were prepared by introducing CsCl, and the optimal annealing temperature, time, and stoichiometric ratio of the film were explored in this work. The conventional structure of CsBiSCl PSCs achieved a power conversion efficiency (PCE) of 10.38%, and the efficiency declined by only 3% after aging in air for 150 days, showing excellent stability, which is one of the most stable devices in inorganic PSCs. This work opens up a new road for the future development of environmentally friendly and commercially stable lead-free PSCs.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpclett.4c00310DOI Listing

Publication Analysis

Top Keywords

perovskite solar
8
solar cells
8
environmentally friendly
8
pscs
6
high-efficiency ultra-stable
4
ultra-stable cesium-bismuth-based
4
cesium-bismuth-based lead-free
4
perovskite
4
lead-free perovskite
4
cells modification
4

Similar Publications

Recent Progress and Advances of Perovskite Crystallization in Carbon-Based Printable Mesoscopic Solar Cells.

Adv Mater

January 2025

Michael Grätzel Center for Mesoscopic Solar Cells Wuhan National Laboratory for Optoelectronics Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China.

Carbon-based printable mesoscopic solar cells (p-MPSCs) offer significant advantages for industrialization due to their simple fabrication process, low cost, and scalability. Recently, the certified power conversion efficiency of p-MPSCs has exceeded 22%, drawing considerable attention from the community. However, the key challenge in improving device performance is achieving uniform and high-quality perovskite crystallization within the mesoporous structure.

View Article and Find Full Text PDF

Dynamic Reconstruction of Fluid Interface Manipulated by Fluid Balancing Agent for Scalable Efficient Perovskite Solar Cells.

Adv Mater

January 2025

Institute for Advanced Materials & Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China.

Laboratory-scale spin-coating techniques are widely employed for fabricating small-size, high-efficiency perovskite solar cells. However, achieving large-area, high-uniformity perovskite films and thus high-efficiency solar cell devices remain challenging due to the complex fluid dynamics and drying behaviors of perovskite precursor solutions during large-area fabrication processes. In this work, a high-quality, pinhole-free, large-area FAPbI perovskite film is successfully obtained via scalable blade-coating technology, assisted by a novel bidirectional Marangoni convection strategy.

View Article and Find Full Text PDF

Undesirable loss of open-circuit voltage and current of metal halide perovskite (MHP) solar cells are closely associated with defects, so theoretical calculations have been often performed to scrutinize the nature of defects in bulk of MHPs. Yet, exploring the properties of defects at surfaces of MHPs is severely lacking given the complexity of the surface defects with high concentrations. In this study, IPb (PbI) antisite defects, namely one Pb (I) site being occupied by one I (Pb) atom at the surfaces of the FAPbI3 (FA = CH(NH2)2) material, are found to create electron (hole) traps when the surfaces with IPb (PbI) antisite defects are negatively (positively) charged.

View Article and Find Full Text PDF

Dimensional engineering of interlayer for efficient large-area perovskite solar cells with high stability under ISOS-L-3 aging test.

Sci Adv

January 2025

Fujian Key Laboratory of Semiconductor Materials and Applications, CI Center for OSED, Department of Physics, Xiamen University, Xiamen 361005, P. R. China.

The utilization of low-dimensional perovskites (LDPs) as interlayers on three-dimensional (3D) perovskites has been regarded as an efficient strategy to enhance the performance of perovskite solar cells. Yet, the formation mechanism of LDPs and their impacts on the device performance remain elusive. Herein, we use dimensional engineering to facilitate the controllable growth of 1D and 2D structures on 3D perovskites.

View Article and Find Full Text PDF

Synergetic Interface and Bulk Defects Modification with Identical Organic Molecule for Efficient Inverted Perovskite Solar Cells.

ACS Appl Mater Interfaces

January 2025

Center for Excellence in Nanoscience (CAS), Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing 100190, China.

Recent progress in inverted perovskite solar cells (IPSCs) mainly focused on NiO modification and perovskite (PVK) regulation to enhance efficiency and stability. However, most works address only monofunctional modifications, and identical molecules with the ability to simultaneously optimize NiO interface and perovskite bulk phase have been rarely reported. This work proposes a dual modification approach using 4-amino-3,5-dichlorobenzotrifluoride (DCTM) to optimize both NiO upper interfaces and reduction of bulk defects in perovskite.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!