Intermetallic nanomaterials are unique in terms of their band gap, atomic-level arrangement, and well-defined stoichiometry, which allows them to exhibit significantly enhanced catalytic performance in electrochemical applications. However, the preparation of durable intermetallic catalysts with a lower content of platinum group metals is challenging, while the lack of control over the loss of active components limits their long-term application due to weak interaction between the support and the nanostructure. Here, we have designed the intermetallic alloyed nanoparticles (NPs) of PdY on N-doped carbon nanotubes (PdY/NCNTs) as a multifunctional catalyst for the oxygen reduction reaction (ORR), the ethanol oxidation reaction (EOR), and zinc-air batteries (ZABs). The strong adhesion through nitrogen ensures the anchoring of alloyed PdY NPs on the NCNTs, which restrains atomic migration and sintering during their conversion to intermetallic phases. This study confirms that there is negligible active site leaching owing to the strong and multiple dative bonds between the NCNTs and PdY NPs. Therefore, this catalyst exhibits remarkable catalytic activity, resulting in a mass activity of 1317 and 2902 mA mg at and for the ORR and the EOR, respectively, and remains stable for a longer period. In addition, the PdY/NCNT-containing air cathode-fabricated ZAB achieved a higher power density (0.236 W cm) compared to the benchmark Pt/C.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3nr06188dDOI Listing

Publication Analysis

Top Keywords

carbon nanotubes
8
oxygen reduction
8
reduction reaction
8
ethanol oxidation
8
oxidation reaction
8
zinc-air batteries
8
pdy nps
8
intermetallic
5
intermetallic pd-y
4
pd-y nanoparticles/n-doped
4

Similar Publications

The interplay between attractive London dispersion forces and steric effects due to repulsive forces resulting from the Pauli principle often determines the geometry and stability of nanostructures. Aromatic polyimides (PI) and carbon nanotubes (CNT) were chosen as building blocks as two components in the hetero delocalized electron nanostructures. Two PIs, having the same diamine part and different linkage substituents between two phenyl rings of dianhydride part, one linked with ether bond (C-O-C) (OPI), the other with C-(CF3)2 (FPI), were investigated.

View Article and Find Full Text PDF

Biomass, as a source of lignocellulose, can be valorized into carbon micro/nanofibers for adsorbing greenhouse gas (GHGs) emissions, especially CO. This article is derived from systematic evidence evaluation of published studies, presenting new, innovative, and systemic approaches to lignocellulose-based carbon micro/nanofiber studies. The review covers a general overview of carbon micro/nanofiber studies, mapping chronicles of the studies, carbon micro/nanofiber types for CO uptake, carbon micro/nanofibers fabrication and characterization, obtained carbonaceous material activation and performances, regulatory frameworks, and sustainability.

View Article and Find Full Text PDF

The increasing reliance on electronic devices has created a pressing demand for high-performance and sustainable electromagnetic interference shielding materials. While conventional materials, such as metals and carbon-based composites, offer excellent shielding capabilities, they are hindered by high costs, environmental concerns, and limitations in scalability. Polysaccharide-based materials, including cellulose, chitosan, and alginate, represent a promising alternative due to their biodegradability, renewability, and versatility.

View Article and Find Full Text PDF

Polycyclic aromatic hydrocarbons (PAHs) are carcinogenic compounds resulting from incomplete burning of organic materials. This work describes the successful layer-by-layer fabrication of a novel zinc oxide nanocomposite made of zinc oxide nanoparticles, aniline, sodium dodecyl sulfate, and modified multi-walled carbon nanotubes on a stainless steel wire by electrodeposition. The coating and extraction conditions were screened, optimized, and validated using factorial design and central composite design, respectively.

View Article and Find Full Text PDF

In the 21st century, thanks to advances in biotechnology and developing pharmaceutical technology, significant progress is being made in effective drug design. Drug targeting aims to ensure that the drug acts only in the pathological area; it is defined as the ability to accumulate selectively and quantitatively in the target tissue or organ, regardless of the chemical structure of the active drug substance and the method of administration. With drug targeting, conventional, biotechnological and gene-derived drugs target the body's organs, tissues, and cells that can be selectively transported to specific regions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!