While π-bonds typically undergo cycloaddition with ozone, resulting in the release of much-noticed carbonyl O-oxide Criegee intermediates, lone-pairs of electrons tend to selectively accept a single oxygen atom from O, producing singlet dioxygen. We questioned whether the introduction of potent electron-donating groups, akin to N-heterocyclic olefins, could influence the reactivity of double bonds - shifting from cycloaddition to oxygen atom transfer or generating lesser-known, yet stabilized, donor-substituted Criegee intermediates. Consequently, we conducted a comparative computational study using density functional theory on a series of model olefins with increasing polarity due to (asymmetric) π-donor substitution. Reaction path computations indicate that highly polarized double bonds, instead of forming primary ozonides in their reaction with O, exhibit a preference for accepting a single oxygen atom, resulting in a zwitterionic species formally identified as a carbene-carbonyl adduct. This previously unexplored reactivity potentially introduces aldehyde umpolung chemistry (Breslow intermediate) through olefin ozonolysis. Considering solvent effects implicitly reveals that increased solvent polarity further directs the trajectories toward a single oxygen atom transfer reactivity by stabilizing the zwitterionic character of the transition state. The competing modes of chemical reactivity can be explained by a bifurcation of the reaction valley in the post-transition state region.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.202400026 | DOI Listing |
Anal Chem
January 2025
Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
Inorg Chem
January 2025
State Key Laboratory of Environment-friendly Energy Materials, School of National Defence Science & Technology, Nuclear Waste and Environmental Safety Key Laboratory of Defense, Southwest University of Science and Technology, Mianyang, Sichuan 621010, P. R. China.
Electrochemical uranium extraction from seawater is a vital project for the sustainable development of the nuclear industry, which requires selective intrinsic binding sites for uranyl. In this work, oxygen vacancies (O vacancies) were developed as an atomically identified confinement for uranyl, and thus, rapid uranium extraction from seawater was achieved. In a short period of 700 s, InO nanosheets with rich O vacancies (V-rich InO nanosheets) exhibited a high extraction efficiency of 88.
View Article and Find Full Text PDFInorg Chem Front
December 2024
University of Innsbruck, Department of General, Inorganic and Theoretical Chemistry Innrain 80-82 6020 Innsbruck Austria
We report the synthesis of dianionic OCO-supported NHC and MIC complexes of molybdenum and tungsten with the general formula (OCO)MO (OCO = bis-phenolate benzimidazolylidene M = Mo (1-Mo), bis-phenolate triazolylidene M = Mo (2-Mo), M = W (2-W) and bis-phenolate imidazolylidene, M = Mo (3-Mo), W (3-W)). These complexes are tested in the catalytic deoxygenation of nitroarenes using pinacol as a sacrificial oxygen atom acceptor/reducing agent to examine the influence of the carbene and the metal centre in this transformation. The results show that the molybdenum-based triazolylidene complex 2-Mo is by far the most active catalyst, and TOFs of up to 270 h are observed, while the tungsten analogues are basically inactive.
View Article and Find Full Text PDFChem Pharm Bull (Tokyo)
January 2025
Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan.
Density functional theory calculations on the cyclization of di-t-butyl 2-(2-aminophenyl)-2-methyl malonate (1) to t-butyl 3-methyloxindole-3-carboxylate (2) reveal that acetic acid-assisted protonation of the carbonyl oxygen atom reduces the activation Gibbs free energy significantly lower than methanol-assisted pathways. Experimental data confirm that reaction concentration plays a pivotal role in oxindole formation. Experimental results also indicate distinct reaction mechanisms at low and high concentrations.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, South Korea.
Epoxides are versatile chemical intermediates that are used in the manufacture of diversified industrial products. For decades, thermochemical conversion has long been employed as the primary synthetic route. However, it has several drawbacks, such as harsh and explosive operating conditions, as well as a significant greenhouse gas emissions problem.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!