Background: We aimed to examine the national and subnational prevalence of vulnerable newborn phenotypes in Peru, 2012-2021.
Methods: Newborn phenotypes were defined using gestational age (preterm [PT], term [T]), birthweight for gestational age using INTERGROWTH-21st standards (small for gestational age [SGA], appropriate for gestational age [AGA] or large for gestational age [LGA]), and birthweight (low birthweight [LBW], non-LBW) using the Peruvian National Birth Registry as six (by excluding birthweight) and ten newborn phenotypes (using all three outcomes). Small phenotypes (with at least one classification of PT, SGA, or LBW) were further considered. Using individual-level data, we stratified the phenotypes by maternal educational level, maternal age, healthcare insurance, altitude of residence, and geographic region (Coast, Andes, and Amazon).
Findings: The prevalence of the five vulnerable newborn phenotypes for the study period was LGA+T (15.2%), AGA+PT (5.2%), SGA+T (4.6%), LGA+PT (0.8%), and SGA+PT (0.7%). The Coast had a higher prevalence of newborns with large phenotypes (19.4%) and the Highlands a higher prevalence of newborns with small phenotypes (12.5%). Mothers with poor socioeconomic status, extreme ages and living at high altitude had a higher prevalence of newborns with small phenotypes, and mothers who were wealthier, more educated, and older had a higher prevalence of infants with large phenotypes.
Interpretation: Our findings cautiously suggest that socioeconomic and geographic disparities may play a crucial role in shaping vulnerable newborn phenotypes at national and subnational level in Peru. Further studies using longitudinal data are needed to corroborate our findings and to identify individual-level risk factors.
Funding: Ter Meulen Grant from the KNAW Medical Sciences Fund of the Royal Netherlands Academy of Arts and Sciences (KNAWWF/1085/TMB406, KNAWWF/1327/TMB202116), Fogarty Program (D43TW011502).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10945436 | PMC |
http://dx.doi.org/10.1016/j.lana.2024.100695 | DOI Listing |
Cureus
December 2024
Clinical Genetics, Aster Malabar Institute of Medical Sciences, Kozhikode, IND.
Neonatal hypoglycemia (NH) is a common abnormality in newborns, posing significant morbidity risks. Prompt diagnosis and treatment are vital to mitigate brain damage and enhance outcomes. Congenital hyperinsulinemia (CHI) is a leading cause of recurrent hypoglycemia in infants, often stemming from genetic mutations such as in the gene, manifesting as hyperinsulinism-hyperammonemia syndrome (HI/HA).
View Article and Find Full Text PDFMult Scler
January 2025
Departamento de Neurología, Pontificia Universidad Católica de Chile, Santiago, Chile.
Background: Real-world studies are needed to expand our knowledge concerning populations underrepresented in clinical trials.
Objective: This study aimed to evaluate the safety and effectiveness of ocrelizumab in Hispanic/Latino people with multiple sclerosis (pwMS).
Methods: Prospective longitudinal observational study including pwMS who received at least one dose of ocrelizumab between June 2018 and October 2023.
BMC Public Health
January 2025
Murdoch Children's Research Institute, 50 Flemington Road, Parkville, VIC, 3052, Australia.
Background: In a world confronted with new and connected challenges, novel strategies are needed to help children and adults achieve their full potential, to predict, prevent and treat disease, and to achieve equity in services and outcomes. Australia's Generation Victoria (GenV) cohorts are designed for multi-pronged discovery (what could improve outcomes?) and intervention research (what actually works, how much and for whom?). Here, we describe the key features of its protocol.
View Article and Find Full Text PDFClin Chem
January 2025
Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, United States.
Background: Structural variation (SV), defined as balanced and unbalanced chromosomal rearrangements >1 kb, is a major contributor to germline and neoplastic disease. Large variants have historically been evaluated by chromosome analysis and now are commonly recognized by chromosomal microarray analysis (CMA). The increasing application of genome sequencing (GS) in the clinic and the relatively high incidence of chromosomal abnormalities in sick newborns and children highlights the need for accurate SV interpretation and reporting.
View Article and Find Full Text PDFClin Chem
January 2025
Division of Maternal-Fetal-Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.
Background: Genetic screening has advanced from prenatal cell-free DNA (cfDNA) screening for aneuploidies (cfDNA-ANP) to single-gene disorders (cfDNA-SGD). Clinical validation studies have been promising in pregnancies with anomalies but are limited in the general population.
Methods: Chart review and laboratory data identified pregnancies with cfDNA-SGD screening for 25 autosomal dominant conditions at our academic center.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!