Objective: To develop an artificial intelligence (AI) model able to perform both segmentation of hand joint ultrasound images for osteophytes, bone, and synovium and perform osteophyte severity scoring following the EULAR-OMERACT grading system (EOGS) for hand osteoarthritis (OA).

Methods: One hundred sixty patients with pain or reduced function of the hands were included. Ultrasound images of the metacarpophalangeal (MCP), proximal interphalangeal (PIP), distal interphalangeal (DIP), and first carpometacarpal (CMC1) joints were then manually segmented for bone, synovium and osteophytes and scored from 0 to 3 according to the EOGS for OA. Data was divided into a training, validation, and test set. The AI model was trained on the training data to perform bone, synovium, and osteophyte identification on the images. Based on the manually performed image segmentation, an AI was trained to classify the severity of osteophytes according to EOGS from 0 to 3. Percent Exact Agreement (PEA) and Percent Close Agreement (PCA) were assessed on individual joints and overall. PCA allows a difference of one EOGS grade between doctor assessment and AI.

Results: A total of 4615 ultrasound images were used for AI development and testing. The developed AI model scored on the test set for the MCP joints a PEA of 76% and PCA of 97%; for PIP, a PEA of 70% and PCA of 97%; for DIP, a PEA of 59% and PCA of 94%, and CMC a PEA of 50% and PCA of 82%. Combining all joints, we found a PEA between AI and doctor assessments of 68% and a PCA of 95%.

Conclusion: The developed AI model can perform joint ultrasound image segmentation and severity scoring of osteophytes, according to the EOGS. As proof of concept, this first version of the AI model is successful, as the agreement performance is slightly higher than previously found agreements between experts when assessing osteophytes on hand OA ultrasound images. The segmentation of the image makes the AI explainable to the doctor, who can immediately see why the AI applies a given score. Future validation in hand OA cohorts is necessary though.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10944993PMC
http://dx.doi.org/10.3389/fmed.2024.1297088DOI Listing

Publication Analysis

Top Keywords

ultrasound images
20
severity scoring
12
bone synovium
12
artificial intelligence
8
intelligence model
8
segmentation severity
8
scoring osteophytes
8
osteophytes hand
8
hand osteoarthritis
8
model perform
8

Similar Publications

The cortex and cerebellum are densely connected through reciprocal input/output projections that form segregated circuits. These circuits are shown to differentially connect anterior lobules of the cerebellum to sensorimotor regions, and lobules Crus I and II to prefrontal regions. This differential connectivity pattern leads to the hypothesis that individual differences in structure should be related, especially for connected regions.

View Article and Find Full Text PDF

The human brain connectome is characterized by the duality of highly modular structure and efficient integration, supporting information processing. Newborns with congenital heart disease (CHD), prematurity, or spina bifida aperta (SBA) constitute a population at risk for altered brain development and developmental delay (DD). We hypothesize that, independent of etiology, alterations of connectomic organization reflect neural circuitry impairments in cognitive DD.

View Article and Find Full Text PDF

Background: The arterial stiffening is attributed to the intrinsic structural stiffening and/or load-dependent stiffening by increased blood pressure (BP). The respective lifetime alterations and major determinants of the two components with normal aging are not clear.

Methods: A total of 3053 healthy adults (1922 women) aged 18-79 years were enrolled.

View Article and Find Full Text PDF

This study investigates the gross morphological and morphometric characteristics of thoracic and lumbar intervertebral discs (IVDs) in guinea pigs, utilising micro-CT imaging and anatomical dissection. The findings reveal 13 thoracic and six lumbar IVDs were identified, with thoracic discs transitioning from rounded forms at T1-T3 to triangular and heart-shaped structures at T4-T13, while lumbar IVDs exhibited a consistently flattened heart shape. Morphometric analysis revealed statistically significant differences, with lumbar IVDs being larger in lateral and dorsoventral width, disc area, annulus fibrosus (AF) area and nucleus pulposus (NP) area, and ventral height compared to thoracic discs.

View Article and Find Full Text PDF

CLEFT: Language-Image Contrastive Learning with Efficient Large Language Model and Prompt Fine-Tuning.

Med Image Comput Comput Assist Interv

October 2024

Department of Biomedical Engineering, Yale University, New Haven, CT, USA.

Recent advancements in Contrastive Language-Image Pre-training (CLIP) [21] have demonstrated notable success in self-supervised representation learning across various tasks. However, the existing CLIP-like approaches often demand extensive GPU resources and prolonged training times due to the considerable size of the model and dataset, making them poor for medical applications, in which large datasets are not always common. Meanwhile, the language model prompts are mainly manually derived from labels tied to images, potentially overlooking the richness of information within training samples.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!