A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3100

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Prediction of Fuhrman pathological grade of renal clear cell carcinoma based on CT texture analysis. | LitMetric

AI Article Synopsis

  • * A retrospective analysis of data from 94 patients, which included 32 low-grade and 62 high-grade cases, utilized Lasso regression and binary logistic regression to create a predictive model.
  • * The results indicated that the model demonstrated high predictive accuracy, with an area under the ROC curve (AUC) of 0.961 for the training group and 0.731 for the validation group, suggesting it effectively differentiates between cancer grades.

Article Abstract

Objective: To study the predictive performance of the imaging model based on the texture analysis of CT plain scan in distinguishing between low (grade I and II) and high (grade III and IV) of Fuhrman pathological grade of renal clear cell carcinoma.

Methods: The clinical data of 94 patients with ccRCC who underwent CT scan and were confirmed by biopsy or surgery in TCGA-KIRC public database were retrospectively analyzed. There were 32 cases of low-grade ccRCC and 62 cases of high-grade ccRCC. The patients were randomly divided into training set and verification set according to the proportion of 7:3 by stratified sampling method. The imaging characteristics of ccRCC were calculated in the plain CT images. Lasso regression was used to reduce the dimensionality of the imaging characteristics of the training set, and binary logistic regression was used to construct the prediction model. Bootstrap method was used to verify the training set model and the validation set model, and the area under the receiver operating characteristic (ROC) curve (AUC) was calculated respectively.

Results: Binary logistic regression showed that only imaging features were independent risk factors for predicting the Furhman classification of ccRCC. The predictive model was y = 1/[1 + exp (-z)], z = 1.274 × imaging risk score + 0.072. The results of bootstrap internal validation showed that the AUC of the training group was 0.961 (95% CI: 0.900-0.913). The Hosmer-Lemeshow goodness of fit test showed that the prediction model had a good calibration in the training group (P = 0.416). The AUC of prediction model in validation group was 0.731 (95% CI: 0.500-1.000). The Hosmer-Lemeshow goodness of fit test results showed that the prediction model had a good calibration in the validation group (P = 0.592).

Conclusion: The model based on CT texture analysis has a good predictive effect in differentiating low-grade and high-grade ccRCC and can provide reference for the treatment and prognosis of patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10944366PMC

Publication Analysis

Top Keywords

prediction model
16
based texture
12
texture analysis
12
training set
12
model
9
fuhrman pathological
8
pathological grade
8
grade renal
8
renal clear
8
clear cell
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: