Introduction: Alzheimer's disease (AD) is a complex disease influenced by genetics and environment. More than 75 susceptibility loci have been linked to late-onset AD, but most of these loci were discovered in genome-wide association studies (GWAS) exclusive to non-Hispanic White individuals. There are wide disparities in AD risk across racially stratified groups, and while these disparities are not due to genetic differences, underrepresentation in genetic research can further exacerbate and contribute to their persistence. We investigated the racial/ethnic representation of participants in United States (US)-based AD genetics and the statistical implications of current representation.
Methods: We compared racial/ethnic data of participants from array and sequencing studies in US AD genetics databases, including National Institute on Aging Genetics of Alzheimer's Disease Data Storage Site (NIAGADS) and NIAGADS Data Sharing Service (dssNIAGADS), to AD and related dementia (ADRD) prevalence and mortality. We then simulated the statistical power of these datasets to identify risk variants from non-White populations.
Results: There is insufficient statistical power (probability <80%) to detect single nucleotide polymorphisms (SNPs) with low to moderate effect sizes (odds ratio [OR]<1.5) using array data from Black and Hispanic participants; studies of Asian participants are not powered to detect variants OR <= 2. Using available and projected sequencing data from Black and Hispanic participants, risk variants with OR = 1.2 are detectable at high allele frequencies. Sample sizes remain insufficiently powered to detect these variants in Asian populations.
Discussion: AD genetics datasets are largely representative of US ADRD burden. However, there is a wide discrepancy between proportional representation and statistically meaningful representation. Most variation identified in GWAS of non-Hispanic White individuals have low to moderate effects. Comparable risk variants in non-White populations are not detectable given current sample sizes, which could lead to disparities in future studies and drug development. We urge AD genetics researchers and institutions to continue investing in recruiting diverse participants and use community-based participatory research practices.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10945594 | PMC |
http://dx.doi.org/10.1002/trc2.12462 | DOI Listing |
Clin Trials
January 2025
Department of Biostatistics, University of Florida, Gainesville, FL, USA.
Introduction: The sequential parallel comparison design has emerged as a valuable tool in clinical trials with high placebo response rates. To further enhance its efficiency and effectiveness, adaptive strategies, such as sample size adjustment and allocation ratio modification can be employed.
Methods: We compared the performance of Jennison and Turnbull's method and the Promising Zone approach for sample size adjustment in a two-phase sequential parallel comparison design study.
Front Biosci (Landmark Ed)
January 2025
Department of Neurology, Jinshan Hospital, Fudan University, 201508 Shanghai, China.
Background: Neuronal cholesterol deficiency may contribute to the synaptopathy observed in Alzheimer's disease (AD). However, the underlying mechanisms remain poorly understood. Intact synaptic vesicle (SV) mobility is crucial for normal synaptic function, whereas disrupted SV mobility can trigger the synaptopathy associated with AD.
View Article and Find Full Text PDFJ Integr Neurosci
January 2025
Down Syndrome Program, Division of Medical Genetics and Metabolism, Department of Pediatrics, Massachusetts General Hospital, Boston, MA 02114, USA.
Objective: To study the use of a dementia screening tool in our clinic cohort of adults with Down syndrome.
Study Design: A retrospective chart review of patients with Down syndrome was conducted to follow the use of the Adaptive Behaviour Dementia Questionnaire (ABDQ) in a dementia screening protocol. The ABDQ results for patients aged 40 years and older at a Down syndrome specialty clinic program were assessed.
J Integr Neurosci
January 2025
Department of Radiology, Affiliated Hospital of North Sichuan Medical College, 637000 Nanchong, Sichuan, China.
Background: Volume alterations in the parietal subregion have received less attention in Alzheimer's disease (AD), and their role in predicting conversion of mild cognitive impairment (MCI) to AD and cognitively normal (CN) to MCI remains unclear. In this study, we aimed to assess the volumetric variation of the parietal subregion at different cognitive stages in AD and to determine the role of parietal subregions in CN and MCI conversion.
Methods: We included 662 participants from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database, including 228 CN, 221 early MCI (EMCI), 112 late MCI (LMCI), and 101 AD participants.
J Integr Neurosci
January 2025
Department of General Medicine, The Second Affiliated Hospital of Dalian Medical University, 116023 Dalian, Liaoning, China.
Alzheimer's disease (AD) is a common central neurodegenerative disease disorder characterized primarily by cognitive impairment and non-cognitive neuropsychiatric symptoms that significantly impact patients' daily lives and behavioral functioning. The pathogenesis of AD remains unclear and current Western medicines treatment are purely symptomatic, with a singular pathway, limited efficacy, and substantial toxicity and side effects. In recent years, as research into AD has deepened, there has been a gradual increase in the exploration and application of medicinal plants for the treatment of AD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!