AI Article Synopsis

  • The study examines how seasonal changes and elevation impact soil microbial communities in alpine grasslands, particularly focusing on interactions within the soil food web.
  • Researchers collected 158 soil samples from three mountains, analyzing them during spring snowmelt and summer using metatranscriptomics to assess prokaryotic and eukaryotic communities.
  • The findings indicate increased consumer pressure from spring to summer, resulting in greater diversity among prey communities, which helps sustain the vital bacterial and fungal communities necessary for ecosystem health.

Article Abstract

While it is acknowledged that alpine soil bacterial communities are primarily driven by season and elevation, there is no consensus on the factors influencing fungi and protists. Here we used a holistic approach of the microbiome to investigate the seasonal dynamics in alpine grasslands, focusing on soil food web interactions. We collected 158 soil samples along elevation transects from three mountains in the Alps, in spring during snowmelt and in the following summer. Using metatranscriptomics, we simultaneously assessed prokaryotic and eukaryotic communities, further classified into trophic guilds. Our findings reveal that the consumers' pressure increases from spring to summer, leading to more diverse and evenly distributed prey communities. Consequently, consumers effectively maintain the diverse soil bacterial and fungal communities essential for ecosystem functioning. Our research highlights the significance of biotic interactions in understanding the distribution and dynamics of alpine microbial communities.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10945362PMC
http://dx.doi.org/10.1093/ismeco/ycae028DOI Listing

Publication Analysis

Top Keywords

dynamics alpine
12
biotic interactions
8
seasonal dynamics
8
alpine soil
8
soil bacterial
8
soil
5
communities
5
interactions explain
4
explain seasonal
4
alpine
4

Similar Publications

Alpine wet meadows are known as NO sinks due to nitrogen (N) limitation. However, phosphate addition and N deposition can modulate this limitation, and little is known about their combinative effects on NO emission from the Qinghai-Tibet Plateau in wet meadows. This study used natural wet meadow as the control treatment (CK) and conducted experiments with N (CONH addition, N15), P (NaHPO addition, P15), and their combinations (CONH and NaHPO addition, N15P15) to investigate how N and P supplementation affected soil NO emissions in wet meadow of QTP.

View Article and Find Full Text PDF

Shrub encroachment can alter the structure and function of grassland ecosystems, leading to their degradation. Therefore, population regeneration dynamics after shrub encroachment on the influence of grassland should not be ignored. , as a pioneer species, has significantly encroached with large areas on the Qinghai-Tibetan Plateau (QTP) due to climate change and over-grazing.

View Article and Find Full Text PDF

Nicotinamide adenine dinucleotide (NAD) is an essential regulator of cellular metabolism and redox processes. NAD levels and the dynamics of NAD metabolism change with increasing age but can be modulated via the diet or medication. Because NAD metabolism is complex and its regulation still insufficiently understood, achieving specific outcomes without perturbing delicate balances through targeted pharmacological interventions remains challenging.

View Article and Find Full Text PDF

To address the challenge of runoff prediction in cold alpine regions with complex spatial distributions, this study proposes an integrated "Water-Soil-Hseat" framework for runoff modeling. This framework incorporates key factors such as precipitation, glacier meltwater, soil spatial distribution, and temperature-induced melt processes, providing a more comprehensive understanding of runoff generation mechanisms. Precipitation and glacier meltwater serve as the primary hydrological variables, while soil spatial distribution acts as an impact factor, and temperature-induced melt processes drive the runoff.

View Article and Find Full Text PDF

The soil nitrogen (N) cycle in the alpine wetland of the Qinghai-Tibet Plateau (QTP) has been strongly affected by vegetation degradation caused by climate change and human activities, subsequently impacting ecosystem functions. However, previous studies have rarely addressed how varying degrees of vegetation degradation affect soil net nitrogen mineralization rates and their temporal dynamics in these sensitive ecosystems. Therefore, we conducted a three-year field-based soil core in situ incubation mineralization experiment on the northeastern margin of the Tibetan Plateau from 2019 to 2021 to assess the variations in soil net ammonification, nitrification, and mineralization rates during the growing season (June to October).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!