A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Photocatalytic degradation of drugs and dyes using a maching learning approach. | LitMetric

The waste management industry uses an increasing number of mathematical prediction models to accurately forecast the behavior of organic pollutants during catalytic degradation. With the increasing quantity of waste generated, these models are critical for reinforcing the efficiency of wastewater treatment strategies. The application of machine-learning techniques in recent years has notably improved predictive models for waste management, which are essential for mitigating the impact of toxic commercial waste on global water supply. Organic contaminants, dyes, pesticides, surfactants, petroleum by-products, and prescription drugs pose risks to human health. Because traditional techniques face challenges in ensuring water quality, modern strategies are vital. Machine learning has emerged as a valuable tool for predicting the photocatalytic degradation of medicinal drugs and dyes, providing a promising avenue for addressing urgent demands in removing organic pollutants from wastewater. This research investigates the synergistic application of photocatalysis and machine learning for pollutant degradation, showcasing a sustainable solution with promising effects on environmental remediation and computational efficiency. This study contributes to green chemistry by providing a clever framework for addressing present-day water pollution challenges and achieving era-driven answers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10945304PMC
http://dx.doi.org/10.1039/d4ra00711eDOI Listing

Publication Analysis

Top Keywords

photocatalytic degradation
8
drugs dyes
8
waste management
8
organic pollutants
8
machine learning
8
degradation drugs
4
dyes maching
4
maching learning
4
learning approach
4
waste
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!