Potential-Rate Correlations of Supported Palladium-Based Catalysts for Aqueous Formic Acid Dehydrogenation.

J Am Chem Soc

Department of Chemical System Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.

Published: April 2024

Aqueous formic acid dehydrogenation (FAD) is a crucial process for hydrogen production, as hydrogen is a clean energy carrier. During this process, formic acid converts into hydrogen and carbon dioxide over a catalyst. Pd-based catalysts have exhibited significant potential in FAD due to their high activity and selectivity. In this study, we investigated aqueous thermal FAD in a mixture of formic acid and sodium formate using electrochemical open-circuit potential (OCP) measurement by loading the catalysts onto a conductive substrate as a working electrode. By varying the reaction conditions such as the concentration of reactants and modifying Pd with Ag, different FAD rates were obtained. Consequently, we revealed the correlation between the catalyst OCP and FAD rate; superior FAD rates reflected a more negative catalyst OCP. Furthermore, deactivation was observed across all catalysts during FAD, with a concurrent increase in catalyst OCP. Interestingly, we found that the logarithm of the FAD rate showed a linear correlation with the OCP of the catalyst during the decay phase, which we quantitatively explained based on the reaction mechanism. This study presents a new discovery that bridges thermal and electrocatalysis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10996003PMC
http://dx.doi.org/10.1021/jacs.4c00101DOI Listing

Publication Analysis

Top Keywords

formic acid
16
catalyst ocp
12
aqueous formic
8
acid dehydrogenation
8
fad
8
fad rates
8
fad rate
8
catalyst
5
ocp
5
potential-rate correlations
4

Similar Publications

The C chemical species, potassium formate (K(HCO)), known as a two-electron reducing agent, finds application in the synthesis of multi-carbon compounds, including oxalate, and plays a crucial role not only in the food and pharmaceutical industries but also across various sectors. However, the direct hydrogenation of CO to produce K(HCO) remains a challenge. Addressing this issue, efficient production of K(HCO) is achieved by integrating CO hydrogenation in a trickle-bed reactor using a heterogeneous catalyst with a novel separation method that utilizes potassium ions from biomass ash for formic acid derivative product isolation.

View Article and Find Full Text PDF

The crustacean cuticle is a composite material acting as a shell, but also linked with other physiological functions as respiration, locomotion or reproduction. The present study aimed to characterize for the first time the cuticle properties of the marine prawn Palaemon serratus using thermal (TGA) and chemical (FTIR, ICP-AES) techniques. The use of native lyophilized cutiles also enabled to estimate the complexity of the cuticle structure of P.

View Article and Find Full Text PDF

Development and validation of an LC-MS/MS method for quantifying total and unbound doravirine in human plasma.

J Chromatogr B Analyt Technol Biomed Life Sci

December 2024

Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa. Electronic address:

A robust LC-MS/MS method was developed to quantify total and unbound doravirine in plasma samples from patients receiving daily doses of 100 mg doravirine, in combination with lamivudine and tenofovir disoproxil fumarate, in a phase 3 clinical trial. The trial is ongoing, and sample analysis is planned to commence once all samples have been collected. The method was validated to quantify both total and unbound doravirine using a single calibration curve.

View Article and Find Full Text PDF

Development and optimization of a high-throughput HPLC-MS/MS method for the simultaneous determination of Cedazuridine, Gemcitabine and its metabolite in mouse plasma.

J Chromatogr B Analyt Technol Biomed Life Sci

December 2024

Department of Pharmaceutical Analysis, Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China. Electronic address:

Gemcitabine (GEM) has been extensively applied in treating various solid tumors. Nonetheless, GEM is easily metabolized in vivo by cytidine deaminase (CDA) to inactive 2', 2'-Difluorodeoxyuridine (dFdU) results in a low oral bioavailability, which limit its clinical application. It was found that Cedazuridine (CDZ) could effectively inhibit the deamination of the drug by CDA, and its combination with GEM might affect the oral bioavailability of GEM.

View Article and Find Full Text PDF

Background: Tavaborole (TAV), a benzoxaborole derivative, is an FDA-approved antifungal agent for treating onychomycosis, a common and persistent fungal infection of the toenails.

Objective: This study aimed to develop a robust stability-indicating HPTLC method to determine TAV in nanostructured lipid carriers (NLC) using a comprehensive approach that includes risk assessment, and Analytical Quality by Design.

Methods: The critical method parameters influencing the HPTLC results were screened using a Plackett-Burman screening design followed by its optimization using a central composite optimization design.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!