A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Iso-mukaadial acetate and ursolic acid acetate bind to Plasmodium Falciparum heat shock protein 70: towards targeting parasite protein folding pathway. | LitMetric

Plasmodium falciparum is the most lethal malaria parasite. P. falciparum Hsp70 (PfHsp70) is an essential molecular chaperone (facilitates protein folding) and is deemed a prospective antimalarial drug target. The present study investigates the binding capabilities of select plant derivatives, iso-mukaadial acetate (IMA) and ursolic acid acetate (UAA), against P. falciparum using an in silico docking approach. The interaction between the ligands and PfHsp70 was evaluated using plasmon resonance (SPR) analysis. Molecular docking, binding free energy analysis and molecular dynamics simulations were conducted towards understanding the mechanisms by which the compounds bind to PfHsp70. The molecular docking results revealed ligand flexibilities, conformations and positions of key amino acid residues and protein-ligand interactions as crucial factors accounting for selective inhibition of Hsp70. The simulation results also suggest protein-ligand van der Waals forces as the driving force guiding the interaction of these compounds with PfHsp70. Of the two compounds, UAA and IMA bound to PfHsp70 within the micromolar range based on surface plasmon resonance (SPR) based binding assay. Our findings pave way for future rational design of new selective compounds targeting PfHsp70.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10949600PMC
http://dx.doi.org/10.1186/s13065-024-01159-6DOI Listing

Publication Analysis

Top Keywords

iso-mukaadial acetate
8
ursolic acid
8
acid acetate
8
plasmodium falciparum
8
protein folding
8
plasmon resonance
8
resonance spr
8
analysis molecular
8
molecular docking
8
pfhsp70
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!