Istanbul is a megacity with a population of 15.5 million and is one of the fastest-growing cities in Europe. Due to the rapidly increasing population and urbanization, Istanbul's daily water needs are constantly increasing. In this study, eight drinking water basins that supply water to Istanbul were comprehensively examined using remote sensing observations and techniques. Water surface area changes were determined monthly, and their relationships with meteorological parameters and climate change were investigated. Monthly water surface areas of natural lakes and dams were determined with the Normalized Difference Water Index (NDWI) applied to Sentinel-2 satellite images. Sentinel-1 Synthetic Aperture Radar (SAR) images were used in months when optical images were unavailable. The study was carried out using 3705 optical and 1167 SAR images on the Google Earth Engine (GEE) platform. Additionally, to determine which areas of water resources are shrinking, water frequency maps of the major drinking water resources were produced. Land use/land cover (LULC) changes that occurred over time were determined, and the effects of the increase in urbanization, especially on drinking water surface areas, were investigated. ESRI LULC data was used to determine LULC changes in watersheds, and the increase in urbanization areas from 2017 to 2022 ranged from 1 to 91.43%. While the basin with the least change was in Istranca, the highest increase in the artificial surface was determined to be in the Büyükçekmece basin with 1833.03 ha (2.89%). While there was a 1-12.35% decrease in the surface areas of seven water resources from 2016 to 2022, an increase of 2.65-93% was observed in three water resources (Büyükçekmece, Sazlıdere, and Elmalı), each in different categories depending on their size. In the overall analysis, total WSA decreased by 62.33 ha from 2016 to 2022, a percentage change of 0.70%. Besides the areal change analysis, the algae contents of the drinking water resources over the years were examined for the major water basins using the Normalized Difference Chlorophyll Index (NDCI) and revealed their relationship with meteorological factors and urbanization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10661-024-12496-3 | DOI Listing |
iScience
December 2024
Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, P.R. China.
Membrane bioreactors (MBRs) are effective sewage treatment technologies, yet the differences in virus removal efficiency between aerobic (AeMBR) and anaerobic membrane bioreactors (AnMBR), remain inadequately understood. This study compared the virus removal efficiency of AeMBR and AnMBR, focusing on the interactions between aerobic (AeS) and anaerobic (AnS) activated sludge and viruses in the sewage treatment process. Results showed average log removal values (LRVs) for MS2 of 2.
View Article and Find Full Text PDFEnviron Health Insights
December 2024
Faculty of Medicine and Health Sciences, University of Bakht Alruda, Ad Duwaym, Sudan.
Climate change represents an unprecedented global public health crisis with extensive and profound implications. The Lancet Commission identified it as the foremost health challenge of the 21st century. In 2015, air pollution alone caused approximately 9 million premature deaths worldwide.
View Article and Find Full Text PDFFront Nutr
December 2024
College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, China.
Background: The use of enzymes within pig feed can reduce the challenges associated with antibiotic-free animal feeding. However, this enzymatic effect is often limited by the internal and external gut environment. This study aimed to improve diet quality and assess the impact of an enzymatically hydrolyzed diet (EHD) on growth performance, meat quality, and intestinal health in growing pigs.
View Article and Find Full Text PDFChemosphere
December 2024
Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, China; Department of Chemical and Environmental Engineering, University of Nottingham Malaysia, B34, Semenyih, 43500, Selangor, Malaysia.
This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/policies/article-withdrawal).
View Article and Find Full Text PDFChemosphere
December 2024
Universidad Aut'onoma de Chile, Chile.
This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/policies/article-withdrawal).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!