Innate behaviors meet multiple needs adaptively and in a serial order, suggesting the existence of a hitherto elusive brain dynamics that brings together representations of upcoming behaviors during their selection. Here we show that during behavioral transitions, possible upcoming behaviors are encoded by specific signatures of neuronal populations in the lateral hypothalamus (LH) that are active near beta oscillation peaks. Optogenetic recruitment of intrahypothalamic inhibition at this phase eliminates behavioral transitions. We show that transitions are elicited by beta-rhythmic inputs from the prefrontal cortex that spontaneously synchronize with LH 'transition cells' encoding multiple behaviors. Downstream of the LH, dopamine neurons increase firing during beta oscillations and also encode behavioral transitions. Thus, a hypothalamic transition state signals alternative future behaviors, encodes the one most likely to be selected and enables rapid coordination with cognitive and reward-processing circuitries, commanding adaptive social contact and eating behaviors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11089001PMC
http://dx.doi.org/10.1038/s41593-024-01598-3DOI Listing

Publication Analysis

Top Keywords

behavioral transitions
16
upcoming behaviors
8
behaviors
6
transitions
5
dynamic state
4
state prefrontal-hypothalamic-midbrain
4
prefrontal-hypothalamic-midbrain circuit
4
circuit commands
4
behavioral
4
commands behavioral
4

Similar Publications

This study examines the relationship between cognitive and affective flexibility, two critical aspects of adaptability. Cognitive flexibility involves switching between activities as rules change, assessed through task-switching or neuropsychological tests and questionnaires. Affective flexibility, meanwhile, refers to shifting between emotional and non-emotional tasks or states.

View Article and Find Full Text PDF

As a category of polymeric materials, soft dielectrics, such as most elastomers and rubber-like materials, have shown great potential for extensive applications in various fields. Owing to their intriguing electromechanical coupling behaviors, the morphological instabilities in soft dielectrics have been an active research field in recent years. In this work, the recent progress in experimental and theoretical research on their electromechanical morphological instabilities is reviewed, especially regarding the theoretical aspect.

View Article and Find Full Text PDF

Layered Composites for High Tan Delta Plateau over Wide Temperature Range.

Polymers (Basel)

December 2024

School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Jurong West 639798, Singapore.

Tan Delta reflects the viscoelastic behavior of materials, particularly polymers. In most cases, a high Tan Delta value is associated with transitions (such as glass transition or melting), enabling effective damping properties near these temperature ranges. However, achieving a high Tan Delta over a broad temperature range is challenging, particularly for engineering applications that involve significant temperature fluctuations.

View Article and Find Full Text PDF

In this article, we report on the alginate heterografted by Poly(N-isopropyl acrylamide-co-N-tert-butyl acrylamide) and Poly(N-isopropyl acrylamide) (ALG-g-P(NIPAM86-co-NtBAM14)-g-PNIPAM) copolymer thermoresponsive hydrogel, reinforced by substituting part of the 5 wt% aqueous formulation by small amounts of Poly(acrylic acid)-g-P(boc-L-Lysine) (PAA-g-P(b-LL)) graft copolymer (up to 1 wt%). The resulting complex hydrogels were explored by oscillatory and steady-state shear rheology. The thermoresponsive profile of the formulations were affected remarkably by increasing the PAA-g-P(b-LL) component of the polymer blend.

View Article and Find Full Text PDF

NIPAm Microgels Synthesised in Water: Tailored Control of Particles' Size and Thermoresponsive Properties.

Polymers (Basel)

December 2024

School of Physical & Chemical Sciences, Queen Mary University of London, Joseph Priestley Building, Mile End Road, London E1 4NS, UK.

Microgels, combining the properties of hydrogels and microparticles, are emerging as versatile materials for varied applications such as drug delivery and sensing, although the precise control of particle size remains a challenge. Advances in synthetic methodologies have provided new tools for tailoring of properties, however costs and scalability of the processes remains a limitation. We report here the water-based synthesis of a library of -isopropylacrylamide-based microgels covalently crosslinked with varying contents of ,-methylenebisacrylamide.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!